• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Self-driving cars that recognize free space can better detect objects

Bioengineer by Bioengineer
June 11, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

What a perception system doesn’t see can help it understand what it sees

IMAGE

Credit: Carnegie Mellon University

PITTSBURGH–It’s important that self-driving cars quickly detect other cars or pedestrians sharing the road. Researchers at Carnegie Mellon University have shown that they can significantly improve detection accuracy by helping the vehicle also recognize what it doesn’t see.

Empty space, that is.

The very fact that objects in your sight may obscure your view of things that lie further ahead is blindingly obvious to people. But Peiyun Hu, a Ph.D. student in CMU’s Robotics Institute, said that’s not how self-driving cars typically reason about objects around them.

Rather, they use 3D data from lidar to represent objects as a point cloud and then try to match those point clouds to a library of 3D representations of objects. The problem, Hu said, is that the 3D data from the vehicle’s lidar isn’t really 3D — the sensor can’t see the occluded parts of an object, and current algorithms don’t reason about such occlusions.

“Perception systems need to know their unknowns,” Hu observed.

Hu’s work enables a self-driving car’s perception systems to consider visibility as it reasons about what its sensors are seeing. In fact, reasoning about visibility is already used when companies build digital maps.

“Map-building fundamentally reasons about what’s empty space and what’s occupied,” said Deva Ramanan, an associate professor of robotics and director of the CMU Argo AI Center for Autonomous Vehicle Research. “But that doesn’t always occur for live, on-the-fly processing of obstacles moving at traffic speeds.”

In research to be presented at the Computer Vision and Pattern Recognition (CVPR) conference, which will be held virtually June 13-19, Hu and his colleagues borrow techniques from map-making to help the system reason about visibility when trying to recognize objects.

When tested against a standard benchmark, the CMU method outperformed the previous top-performing technique, improving detection by 10.7% for cars, 5.3% for pedestrians, 7.4% for trucks, 18.4% for buses and 16.7% for trailers.

One reason previous systems may not have taken visibility into account is a concern about computation time. But Hu said his team found that was not a problem: their method takes just 24 milliseconds to run. (For comparison, each sweep of the lidar is 100 milliseconds.)

###

In addition to Hu and Ramanan, the research team included Jason Ziglar of Argo AI and David Held, assistant professor of robotics. The Argo AI Center supported this research.

Media Contact
Byron Spice
[email protected]

Original Source

https://www.cs.cmu.edu/news/self-driving-cars-recognize-free-space-can-better-detect-objects

Tags: Computer ScienceRobotry/Artificial IntelligenceSoftware EngineeringTechnology/Engineering/Computer ScienceVehicles
Share12Tweet8Share2ShareShareShare2

Related Posts

Gut Microbiota Alterations Determine Susceptibility to AIG-Associated Neuroendocrine Tumors

October 8, 2025

Circular RNAs in Mammalian Follicle Development: Insights

October 8, 2025

Surgical Menopause May Prompt Early Workforce Exit in Women, But Hormone Therapy Shows Promise

October 8, 2025

Birds Flourish Despite Pollution from Persistent ‘Forever’ Chemicals

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1045 shares
    Share 418 Tweet 261
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbiota Alterations Determine Susceptibility to AIG-Associated Neuroendocrine Tumors

Circular RNAs in Mammalian Follicle Development: Insights

Surgical Menopause May Prompt Early Workforce Exit in Women, But Hormone Therapy Shows Promise

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.