• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Seismic sensing reveals flood damage potential

Bioengineer by Bioengineer
October 13, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rapidly evolving floods are a major and growing hazard worldwide. Currently, their onset and evolution is hard to identify using existing systems. However, seismic sensors already in place to detect earthquakes could be a solution to this problem. Researchers led by the University of Göttingen show that a seismometer can sense a flood, such as the devastating one that hit Germany in July 2021, up to 1.5 km away. This could act as an early warning to save lives and lessen damage. They also found that being able to measure the “seismic footprint” of the flood provides information on its magnitude, velocity and trajectory in real time, which could be used for future flood protection. The results were published in Geophysical Research Letters.

Damage from wastewater in Sinzig, Ahr Valley, after flood in 2021

Credit: Michael Dietze

Rapidly evolving floods are a major and growing hazard worldwide. Currently, their onset and evolution is hard to identify using existing systems. However, seismic sensors already in place to detect earthquakes could be a solution to this problem. Researchers led by the University of Göttingen show that a seismometer can sense a flood, such as the devastating one that hit Germany in July 2021, up to 1.5 km away. This could act as an early warning to save lives and lessen damage. They also found that being able to measure the “seismic footprint” of the flood provides information on its magnitude, velocity and trajectory in real time, which could be used for future flood protection. The results were published in Geophysical Research Letters.

Seismic stations not only sense ground shaking due to earthquakes but also signals emitted at the surface of our planet, such as explosions, landslides, storms and – as the researchers discovered – also floods. For this research, scientists turned an existing earthquake seismometer station near the town of Ahrweiler into a flood detection and tracking tool. Using seismological data from the time of the event, they reconstructed the fatal propagation of the disaster right up to the point when power loss cut the data stream.

They found the seismometer literally illustrated the track of the flood for one hour as it ploughed through the steep winding valley through the towns of Rech, Dernau, Walporzheim and Ahrweiler in Germany. By combining mathematical models, the researchers were able to estimate the speed with which the flood moved, to extract information about the rising water level, and the amount of debris – gravel, cars, oil tanks – swept away by the flood. In fact, this data was the only systematic source of measurable information about how the flood evolved because the three existing water level stations in the valley were destroyed early on.

When the seismic data is analysed, this method provides information that is valuable to optimise models of flood behaviour for warning and rescue initiatives. “If the data stream from that station had been available and analysed as our research now shows, essential real time information on the magnitude and velocity of the flood would have been available,” says Dr Michael Dietze, Faculty of Geosciences and Geography, University of Göttingen. Dietze adds: “As 10% of Europe’s surface area is prone to rapid flooding by rivers confined in valleys, we may want to start thinking about new ways of flood early warning. The current network of water level stations is not enough to be adequately prepared for future events.”

Dietze and colleagues are currently working on a plan to identify further areas at risk of flooding and equip them with low cost “watch tower” seismometer pairs – an initiative that would cost a fraction of a percent of the damage caused by future floods. Dietze concludes, “The catastrophic July flood that hit the Ahrtal in Germany in July 2021 revealed to residents, politicians, emergency services and scientists how much we need to learn to improve current flood warning systems.”

Original publication: Dietze et al., “A seismic approach to flood detection and characterization in upland catchments”, Geophysical Research Letters 2022. Doi: 2022GL100170

Contact:

Dr Michael Dietze

University of Göttingen

Faculty of Geosciences and Geography

Tel: +49 (0)551 39 4570

Email: [email protected]

www.playgroundearth.de

 

 



DOI

10.1029/2022GL100170

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Geophysical Research Letters

Article Publication Date

13-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

World Cancer Day

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

February 4, 2023
AC hum noise-based detection using HumTouch.

Tech that turns household surfaces into touch sensors is a touch closer to application

February 4, 2023

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In