• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Searching for human remains: Study suggests methodology to improve results

Bioengineer by Bioengineer
January 29, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Narrow searcher spacing and double passes increases chances

(Boston)–In an effort to increase the effectiveness and efficiency of law enforcement searches for human remains in the wild, searchers should cover the same area twice from two different angles and work no more than 1 to 2 meters apart while exploring the area.

Initial discovery of skeletal remains often is by chance instead of through an organized forensic search. Human skeletal remains in outdoor forensic sites often are dispersed from their point of initial deposition making locating isolated bones difficult. Forested areas in particular may obscure remains, as bones stained from soft-tissue and leaf-litter decomposition may blend in with the forest floor. Wide skeletal dispersal presents other problems for searchers, including the difficulty in keeping track of which areas have been searched and maintaining proper spacing of searchers to prevent gapping. Little is known about success rates when searching for dispersed skeletal elements and almost no testing has been done on this topic until now.

In order to test how challenging it is to find bones scattered on the surface in a forest through a simple visual search, researchers from Boston University School of Medicine (BUSM) laid out a search grid at Boston University’s Outdoor Research Facility in Holliston, Mass. The searchers, all BUSM graduate students in forensic anthropology, searched for bones that had been randomly placed on the grid through multiple trials. White-tailed deer and pig bones were used and stained natural colors to increase the difficulty in finding them.

Researchers then examined the effects of searcher spacing and the utility of multiple passes through each grid. “Even with careful searching under controlled conditions, exposed surface skeletal elements can be missed, a concern that is likely amplified under real field search conditions. To maximize remains detection, forensic search protocols should include narrow searcher spacing and double passes through search areas wherever possible,” explained corresponding author James Pokines, PhD, associate professor of forensic anthropology at BUSM.

According to the researchers, studies like these increase our ability to use our law enforcement resources more efficiently and effectively when searching for human remains in forested environments, as in much of New England. “Better skeletal recovery makes it easier for us to find missing individuals and also to identify these remains once located.”

###

These findings appear in the journal Forensic Anthropology.

Media Contact
Gina DiGravio
[email protected]
617-358-7838
http://dx.doi.org/10.5744/fa.2018.1029

Tags: AnthropologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

SMOC1 Identified as Key Gene in β-Cell Dedifferentiation

SMOC1 Identified as Key Gene in β-Cell Dedifferentiation

October 7, 2025

NICU Workers’ Challenges in Hidalgo County Border Community

October 7, 2025

Fra-1 Drives Gastric Cancer via Macrophage and HMGA2

October 7, 2025

Pelvic Dashboard Injuries After Hip Replacement Explored

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    119 shares
    Share 48 Tweet 30
  • New Study Reveals the Science Behind Exercise and Weight Loss

    96 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Next-Gen Multi-Color Lasers Miniaturized on a Single Chip

SMOC1 Identified as Key Gene in β-Cell Dedifferentiation

Scientists Develop ChatGPT-Inspired AI Model to Craft One of the Most Comprehensive Mouse Brain Maps Yet

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.