• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sea slug study illuminates how mitochondria move

Bioengineer by Bioengineer
January 17, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Massive energy needed for nerve cells to keep ‘talking’

IMAGE

Credit: Scott Wiseman for Scripps Research


JUPITER, FL – Jan. 16, 2019 – Your cells have an amazing ability–they can build their own energy factories, called mitochondria. Once built, mitochondria must move where needed in the cell. Defects in mitochondrial transport are a suspected cause of diseases including Alzheimer’s, ALS, Huntington’s and Parkinson’s.

Scientists at Scripps Research have discovered how neurons manage this important process by studying cells from Aplysia californica, a type of sea slug used in neuroscience research. The paper, published this week as the cover story in the journal Cell Reports, may help open the door to new therapies to improve mitochondrial transport, says neuroscientist Sathyanarayanan Puthanveettil, PhD, an associate professor at Scripps Research and senior author of the new study.

“We are very interested in looking at this process in neurodegenerative diseases,” Puthanveettil says. “If you can find potential drugs that can manipulate transport, that might be beneficial.”

Puthanveettil’s team set up the sea slug neurons to grow in dishes. Some neurons grew alone, and others grew alongside partners. In neuroscience lingo, the cell that sends a signal is called “pre-synaptic” and the cell receiving the signal is “post-synaptic.” Because the slugs’ brain circuitry is simple, and their cells are larger, they are a useful model organism to study, Puthanveettil explains.

Neurons have elongated projections called axons that allow messages from the pre-synaptic neurons to reach the post-synaptic neurons. At the end of each axon is a busy chamber called a synapse that transmits the message from one to the other. This system requires a great deal of energy to function, so cells transport mitochondria toward their synapses to provide that energy, Puthanveettil says. Older mitochondria move back to the cell body for recycling.

Puthanveettil, first author Kerriann Badal and their colleagues wanted to uncover the mechanism in cells that starts the transport process. To do this, the team monitored mitochondrial transport as they tried activating different signaling pathways. The experiments led the researchers to pinpoint a signaling pathway called cAMP as a major player. Once a neuron has grown a synapse, cAMP is activated and appears to step in to enhance mitochondrial transport.

Significantly, the team found that the pre-synaptic neuron alters expression of around 4,000 genes (possibly around 20 percent of the genes it has) as it makes new mitochondria.

“The pre-synaptic neuron’s identity is almost completely changed,” Puthanveettil says.

This identity shift appears persistent, too–the cell doesn’t just make mitochondria in a quick burst. Instead, protein synthesis permanently changes to support the building and transport of new mitochondria. This supports the previous finding that a massive amount of energy is needed to maintain pre-synaptic function and keep the cell communicating with its neighbors.

“We’ve discovered a fundamental mechanism responsible for higher brain function,” says Puthanveettil.

Puthanveettil says this discovery was surprising for two reasons: First, the realization that mitochondrial transport increased after the synapse was built, not before. Both processes require a lot of energy, so it was interesting to discover that maintaining the synapse seems to require more energy than the initial building process.

Also, the researchers did not expect to see the production of so many new mitochondria. Many scientists had assumed that enhancing transport would simply jump-start the movement of the many mitochondria that tend to stall along transport lines.

Puthanveettil says future studies could look at how to design a drug therapy to enhance transport in diseases where transport is defective. He is also studying how mitochondrial transport changes in response to learning and memory formation.

###

Media Contact
Stacey Singer DeLoye
[email protected]
561-228-2551

Original Source

https://www.scripps.edu/news-and-events/press-room/2019/20190116-puthanveettil-mitochondria.html

Tags: AlzheimerBiologyGeneticsMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Fibroblast Signatures in Oral Cancer

Unveiling Fibroblast Signatures in Oral Cancer

December 16, 2025
S-Methylcysteine Shields Rats from Toxoplasma Reproductive Harm

S-Methylcysteine Shields Rats from Toxoplasma Reproductive Harm

December 16, 2025

Why Accurate O₂•⁻ Notation Matters in Plants

December 16, 2025

Profiling Toxoplasma gondii Antigens in Mice

December 16, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diabetes Onset Accelerates Frailty in China’s Elderly

Human T-Cell Receptor–CD3: Resting and Active States

Mitral Valve Prolapse and Arrhythmia Risks Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.