• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scripps Research chemists develop reactions for the general synthesis of promising unexplored compounds

Bioengineer by Bioengineer
December 6, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CA—Chemists at Scripps Research have devised the first general method for synthesizing a family of compounds called 1,2,3,5-tetrazines, which hold great promise for making pharmaceuticals, biological probes and other chemical products.

Tetrazine Isomers

Credit: Scripps Research

LA JOLLA, CA—Chemists at Scripps Research have devised the first general method for synthesizing a family of compounds called 1,2,3,5-tetrazines, which hold great promise for making pharmaceuticals, biological probes and other chemical products.

The researchers had synthesized the first compound in this previously unknown family in 2019, but the new method, reported on December 3, 2022 in the Journal of Organic Chemistry, is now general and more efficient.

“For the first time, the chemistry community can access these promising compounds and explore their interesting properties,” says study senior author Dale Boger, PhD, the Richard and Alice Cramer Professor of Chemistry at Scripps Research.

The study’s first author was Zhi-Chen Wu, PhD, a graduate student in the Boger lab during the study, now a medicinal chemist at Amgen.

Methods enabling the synthesis of new compounds always offer the prospect of novel medicines and other products with unusual, valuable features. The 1,2,3,5-tetrazines have been seen as particularly promising, given the success of closely related 1,2,4,5-tetrazines. The latter compounds, discovered in 1959, have unique patterns of reactivity and are widely used for making pharmaceuticals, new materials and chemical probes that label biological molecules. The 1,24,5-tetrazines are best known for their uses in “click chemistry” reactions, so-called for their ease of use and efficient, focused reactivity with target molecules. (Click chemistry’s widespread utility was recognized with this year’s Nobel Prize in Chemistry.)

“The 1,2,4,5-tetrazines have become unbelievably valuable for chemistry in the 60+ years since their discovery,” Boger says.

Despite being an isomer of 1,2,4,5-tetrazines—meaning having the same chemical formula, but with a different arrangement of atoms—1,2,3,5-tetrazines have been much more elusive. Yet when Wu and Boger achieved the first 1,2,3,5-tetrazine synthesis in 2019, they found ample evidence of its promise. One observation was that the compound can very efficiently and swiftly react with compounds called amidines via “ligation reactions” (a type of reaction that joins two fragments together). The chemists noted that such ligations could be the basis for new molecular probes and labeling techniques for biology, as well as for assembling pharmaceuticals and other chemical products. The researchers also found evidence that the 1,2,3,5-tetrazine’s reactivity differed from that of 1,2,4,5-tetrazines, in a way that could allow the two tetrazine classes to be used simultaneously in certain contexts without generating crossover reactivity.

That first synthesis of a 1,2,3,5-tetrazine was relatively laborious and could be used for making only the one compound. The new method, by contrast, offers a general route to making myriad versions of these compounds—efficiently, in just five reaction steps from inexpensive commercially available starting compounds.

The researchers and their colleagues at Scripps Research will now be synthesizing additional new 1,2,3,5-tetrazines to explore their properties in click chemistry and other applications.

“I think this is the start of a new chapter that could prove to be as timely, durable, and important as the one for 1,2,4,5-tetrazines,” Boger says.

“1,2,3,5-Tetrazines: A General Synthesis, Cycloaddition Scope, and Fundamental Reactivity Patterns” was co-authored by Zhi-Chen Wu and Dale L. Boger.

The work was supported in part by the National Institutes of Health (CA042056).

About Scripps Research

Scripps Research is an independent, nonprofit biomedical institute ranked the most influential in the world for its impact on innovation by Nature Index. We are advancing human health through profound discoveries that address pressing medical concerns around the globe. Our drug discovery and development division, Calibr, works hand-in-hand with scientists across disciplines to bring new medicines to patients as quickly and efficiently as possible, while teams at Scripps Research Translational Institute harness genomics, digital medicine and cutting-edge informatics to understand individual health and render more effective healthcare. Scripps Research also trains the next generation of leading scientists at our Skaggs Graduate School, consistently named among the top 10 US programs for chemistry and biological sciences. Learn more at www.scripps.edu.



Journal

The Journal of Organic Chemistry

Share12Tweet8Share2ShareShareShare2

Related Posts

A schematic figure of compressed AgI.

Chemistry under sheer force

January 30, 2023
THE PERFORMANCE OF DECOUPLED TEMPERATURE AND PRESSURE HYDROTHERMAL PROCESS.

Breaking the temperature barrier of hydrothermal carbonization of lignocellulosic biomass

January 30, 2023

Researchers can ‘see’ crystals perform their dance moves

January 30, 2023

New monovalent anion permselective membranes for high-efficient mono-/di-valent anion separation

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced electronic skin for multiplex healthcare monitoring

Chemistry under sheer force

Antioxidants from mitochondria protect cells from dying

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In