• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scripps Oceanography-led study predicts climate change accelerates ocean currents

Bioengineer by Bioengineer
April 20, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team led by researchers at Scripps Institution of Oceanography at UC San Diego used computer model simulations to find that climate change is altering the mechanics of surface ocean circulations, making them become faster and thinner.

Ocean currents off North and Central America

Credit: NASA

An international team led by researchers at Scripps Institution of Oceanography at UC San Diego used computer model simulations to find that climate change is altering the mechanics of surface ocean circulations, making them become faster and thinner.

These changes can have a ripple effect in the ocean, affecting the transport of the nutrients organisms need as well as that of microorganisms themselves. Swifter currents may also affect the processes by which the ocean removes carbon and heat from the atmosphere and protects the planet from excessive atmospheric warming.

“We were surprised to see that surface currents speed up in more than three-fourths of the world’s oceans when we heated the ocean surface,” said study lead author Qihua Peng, who recently joined Scripps Oceanography as a postdoctoral researcher.

The study, published April 20 in the journal Science Advances, sheds light on an underappreciated force behind the speed of global ocean currents. It helps resolve a debate on whether currents are accelerating as a result of global warming.

Wind has been the main factor scientists have studied to describe and predict the speed of currents, but the research team used a global ocean model to simulate what happens when sea surface temperatures are also increased. They found that warming makes the topmost layers of water become lighter. The increased density difference of those warm surface layers from the cold water beneath limits the swift ocean currents to a thinner layer, causing the surface currents to speed up in more than three-fourths of the world’s oceans. The increased speed of rotating ocean currents known as gyres was associated with a slowdown of ocean circulation underneath. The team directly correlated the trend to the presence of ever-increasing levels of greenhouse gases in the atmosphere.

“Our study points to a way forward for investigating ocean circulation change and evaluatingthe uncertainty,” said Scripps Oceanography climate modeler Shang-Ping Xie, whose portion of the work is funded by the National Science Foundation.

Currents are organized into gyres in most oceans that are bounded by continents. The Southern Ocean that rings Antarctica is an exception. There, howling westerly winds make the Antarctic Circumpolar Current the largest in the world in terms of volume transport. Last year, Scripps scientists detected from ocean and space observations that the Antarctic Circumpolar Current is speeding up.

“The accelerating Antarctic Circumpolar Current is exactly what our model predicts as climate warms,” said Xie. 

Study co-authors include Dongxiao Wang of Sun Yat-Sen University in China, scientists from  the Chinese Academy of Sciences, Woods Hole Oceanographic Institution in Massachusetts, and UC Riverside. 

 



Journal

Science Advances

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Surface warming-induced global acceleration of upper ocean currents

Article Publication Date

20-Apr-2022

COI Statement

The authors declare they have no competing interests.

Share12Tweet7Share2ShareShareShare1

Related Posts

Marie Helweg-Larsen, Ph.D.

New study finds worrying linked to more COVID-19 preventative behaviors

May 16, 2022
Artificial muscles help robot vacuum manipulators get a grip

Hannover Messe: Artificial muscles help robot vacuum manipulators get a grip

May 16, 2022

Eavesdroppers can hack 6G frequency with DIY metasurface

May 16, 2022

Comprehensive consideration for machine tools’ energy efficiency and machining accuracy: Exploring the coupling relationship between material removal and thermal control

May 16, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVaccinesWeaponryVirologyUrogenital SystemVirusVaccineZoology/Veterinary ScienceUrbanizationVehiclesUniversity of WashingtonWeather/Storms

Recent Posts

  • Exercise increases dopamine release in mice
  • IU study explored how people’s beliefs impact overdose education and naloxone distribution programs
  • Children in underserved communities are at increased risk of being admitted to the pediatric ICU and of dying there; black children at most risk
  • Precursor of spine and brain forms passively
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....