• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists work to strengthen the synergy of chemotherapy and immunotherapy against cancer

Bioengineer by Bioengineer
April 17, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Phil Jones

AUGUSTA, Ga. (April 17, 2017) – In the war on cancer, powerful chemotherapy agents are increasingly packaged with immunotherapy that primes a patient's immune system to better battle the disease.

To strengthen their synergy, scientists are now focusing on immune cells that normally help the body keep peace but are problematic when it comes to these two working together to fight cancer.

"We call this an overlooked aspect of chemotherapy and radiation therapy as well because it's an unwanted response but a natural one," said Dr. Gang Zhou, immunologist at the Georgia Cancer Center and assistant professor in the Department of Biochemistry and Molecular Biology at the Medical College of Georgia at Augusta University.

Zhou, principal investigator on a new $1.7 million grant from the National Cancer Institute, is talking about how in response to some powerful chemotherapy agents, the body can begin to produce myeloid-derived suppressor cells, or MDSCs, that typically help calm the immune response.

In an otherwise healthy individual, myeloid cells fight infections; their suppressive ability apparently a balance to help ensure that the inflammation needed to fight the virus or bacterium doesn't get out of hand and ultimately cause more health problems.

Some chemotherapy drugs, like the common agent cyclophosphamide, used for a wide range of lymphomas, leukemia, breast, ovarian and other cancers, are known for their ability to reduce the rapid cell division that is a cancer hallmark. Cyclophosphamide also is known to stimulate the immune system. But seemingly paradoxically, this and other common chemotherapy agents also increase the number of MDSCs. As the name implies, these bone-marrow derived immune cells can detract from the efficacy of immunotherapy and chemotherapy as well, by naturally suppressing the immune response.

In fact, chemotherapy induced MDSCs, called T-iMDSCs, directly suppress T cells, key drivers of the immune response that are often targets of immunotherapy. Early data suggests T-iMDSCs also proactively aid a tumor-friendly environ by also inducing cancer stem cells – which make more cancer cells – and enabling the tumor to spread, Zhou said. He notes that activating the immune system also is one way certain types of chemotherapy work. Interestingly, his research team has shown that the same cyclophosphamide doses that stimulate myeloid cells also activate the immune system.

"We want to help make these key pieces work better together," said Zhou, whose new grant will help provide more insight into how these T-iMDSCs occur and what can be done to suppress them.

"We want to preserve the good things chemotherapy can do and add more targeted therapies to attenuate unwanted side effects," he said.

As an example, adoptive T-cell therapy is an emerging immunotherapy strategy, which utilizes tumor-reactive T-cells, either isolated and expanded from a patient's white blood cells or created from a patient's own normal T-cells through biomedical engineering, to fight against cancer. T-iMDSCs can directly counter that effort.

Zhou and his colleagues have shown that mice with advanced lymphoma that received chemotherapy initially had a robust anti-tumor response when also given adoptive T-cell therapy. But they also began to produce more of the immunosuppressive myeloid cells that ultimately helped enable relapse of the disease. The scientists suspect the cell production was again a natural balancing act in a body where cancer, and now a drug, were both inducing inflammation. They found that depleting production of T-iMDSCs by giving yet another chemotherapy drug that also targets rapid cell reproduction – including these proliferating myeloid cells – prevented tumor recurrence, he and colleagues reported in the journal Cancer Research.

"Right now we tend to think chemotherapy primes the patient to make the way for immunotherapy to be more effective," Zhou said. But his research team was among the early groups to find myeloid cells in the mix. The new NCI grant is enabling additional animal studies and human studies as well that will provide Zhou's team more insight about how T-iMDSCs happen and how best to intervene.

Zhou is partnering with Dr. Locke Bryan, hematologist/oncologist and an expert in hematologic malignancies like Hodgkin's lymphoma, to examine levels of MDSCs before and after chemotherapy. They hope to learn more about how levels change in humans and whether the cells become more suppressive following chemotherapy. Early evidence indicates they will find in some patients some of the same things they have found in animal models, Zhou said of the collaboration with Bryan, who directs the Infusion Clinic and is a member of the Bone Marrow Transplant and Hematology Malignancies Team at the Georgia Cancer Center and assistant professor in the MCG Department of Medicine.

"We want to better understand the pathways involved, the key molecules involved in MDSCs' production and function. If we do that, then we can target those molecules," Zhou said. Based on what they've already learned, they are screening compounds and have some good candidates that already are used in patients for other conditions.

Tumors themselves can produce MDSCs as a protective mechanism. Zhou's published studies indicate that gemcitabine and 5'flouroracil, both chemotherapy drugs known to deplete tumor-induced MDSCs, significantly reduce the levels of MDSCs induced by chemotherapy drugs as well. Georgia Cancer Center scientists also have shown that at least two other commonly used chemotherapy agents, doxorubicin and melphalan, also induce MDSCs.

The immune suppressing power of cyclophosphamide means it is also used to treat diseases where the immune system has been too aggressive, like rheumatoid arthritis and lupus, and even to prevent rejection of a transplanted organ.

###

Media Contact

Toni Baker
[email protected]
706-721-4421
@MCG_AUG

http://www.augusta.edu/mcg/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

GC-MS Analysis of Khaini’s Tobacco Leaf Varieties

GC-MS Analysis of Khaini’s Tobacco Leaf Varieties

November 3, 2025

Microbial Metabolites Prevent Urinary Catheter Encrustation

November 3, 2025

Alfalfa Cystatin Genes: Stress Response Insights

November 3, 2025

Hip Dislocation Risk in Cerebral Palsy Children: Study Findings

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GC-MS Analysis of Khaini’s Tobacco Leaf Varieties

Microbial Metabolites Prevent Urinary Catheter Encrustation

Alfalfa Cystatin Genes: Stress Response Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.