• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists urge caution, further assessment of ecological impacts above deep sea mining

Bioengineer by Bioengineer
July 9, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Drazen, et al. (2020).

Interest in deep-sea mining for copper, cobalt, zinc, manganese and other valuable metals has grown substantially in the last decade and mining activities are anticipated to begin soon. A new study, led by University of Hawai’i (UH) at Mānoa researchers, argues that deep-sea mining poses significant risks, not only to the area immediately surrounding mining operations but also to the water hundreds to thousands of feet above the seafloor, threatening vast midwater ecosystems. Further, the scientists suggest how these risks could be evaluated more comprehensively to enable society and managers to decide if and how deep-sea mining should proceed.

Currently 30 exploration licenses cover about 580,000 square miles of the seafloor on the high seas and some countries are exploring exploitation in their own water as well. Most research assessing the impacts of mining and environmental baseline survey work has focused on the seafloor.  

However, large amounts of mud and dissolved chemicals are released during mining and large equipment produces extraordinary noise–all of which travel high and wide. Unfortunately, there has been almost no study of the potential effects of mining beyond the habitat immediately adjacent to extraction activities.

“This is a call to all stakeholders and managers,” said Jeffrey Drazen, lead author of the article and professor of oceanography at UH Mānoa. “Mining is poised to move forward yet we lack scientific evidence to understand and manage the impacts on deep pelagic ecosystems, which constitute most of the biosphere. More research is needed very quickly.”

The deep midwaters of the world’s ocean represent more than 90% of the biosphere, contain 100 times more fish than the annual global catch, connect surface and seafloor ecosystems, and play key roles in climate regulation and nutrient cycles. These ecosystem services, as well as untold biodiversity, could be negatively affected by mining.

This recent paper, published in the Proceedings of the National Academy of Science, provides a first look at potential threats to this system.

“The current study shows that mining and its environmental impacts may not be confined to the seafloor thousands of feet below the surface but could threaten the waters above the seafloor, too,” said Drazen. “Harm to midwater ecosystems could affect fisheries, release metals into food webs that could then enter our seafood supply, alter carbon sequestration to the deep ocean, and reduce biodiversity which is key to the healthy function of our surrounding oceans.”
  

In accordance with UN Convention on the Law of the Sea (UNCLOS), the International Seabed Authority (ISA) is required to ensure the effective protection of the marine environment, including deep midwater ecosystems, from harmful effects arising from mining-related activities. In order to minimize environmental harm, mining impacts on the midwater column must be considered in research plans and development of regulations before mining begins.

“We are urging researchers and governing bodies to expand midwater research efforts, and adopt precautionary management measures now in order to avoid harm to deep midwater ecosystems from seabed mining,” said Drazen.

###

Media Contact
Marcie Grabowski
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.2011914117

Tags: BiodiversityBiologyDevelopmental/Reproductive BiologyEcology/EnvironmentGeology/SoilMarine/Freshwater BiologyMicrobiologyOceanographyPollution/RemediationScience/Health and the Law
Share12Tweet8Share2ShareShareShare2

Related Posts

Navigating Dementia Care: Transitions in Home Management

December 25, 2025

ERO1A Enhances Bladder Cancer Growth via JAK-STAT

December 25, 2025

Addressing Older Adults’ Marginalization in Healthcare

December 25, 2025

Understanding Economic Exploitation in Turkish Oncology Practices

December 25, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Navigating Dementia Care: Transitions in Home Management

ERO1A Enhances Bladder Cancer Growth via JAK-STAT

Addressing Older Adults’ Marginalization in Healthcare

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.