• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists unveil the water buffalo genome

Bioengineer by Bioengineer
October 27, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Caterina Cambuli

An international team of researchers led by the University of Adelaide has published the full genome of the water buffalo – opening the way for improved breeding and conservation of this economically important animal.

The consortium of partners in Australia, Italy, China, Brazil, and the USA, with additional contributors in other countries, say they have now created the tools needed to apply modern molecular breeding systems to water buffalo.

"Water buffaloes were domesticated about 5000 years ago, and since then have been of economic importance for milk, meat and as a work animal around the world," says consortium leader Professor John Williams, Director of the University of Adelaide's Davies Research Centre at the Roseworthy campus.

"They are particularly important in developing countries and, in specialised markets, they provide milk for products such as mozzarella cheese in Italy. The water buffalo is a key agricultural animal because it is able to adapt to diverse environments, and is particularly tolerant of disease.

"In Australia, they were brought to Northern Territory in the early 19th century and today there are milking herds of buffalo in Northern Territory and in South Australia."

There are two subspecies of water buffalo. The researchers sequenced the genome of the River buffalo, which have been selected for milk production through organised breeding programs in Italy, India, the Philippines and Brazil.

Professor Williams says such advances in genomics have revolutionised dairy cattle breeding and now the same molecular tools will be available for water buffalo breeding. This project is another great example of the University of Adelaide's depth and expertise in research areas related to food innovation.

"The publication of the buffalo genome provides the essential reference point for studies on the molecular genetics of the buffalo," Professor Williams says. "It will help breeders to enhance commercially desirable characteristics in the water buffalo, and researchers and conservationists to preserve the diversity of buffalo populations."

The buffalo genome has been published in the journal GigaScience.

Research collaborator and joint lead author Dr Daniela Iamartino, R&D Technical Manager at the AIA-LGS (Italian Breeder Association – Laboratory of Genetics and Services) in Italy, says: "It is also possible to compare the buffalo genome with that of other species to understand differences in the biology of buffalo and their ability to adapt to a wide variety of environments.

"The annotation of the genome identifies the genes present to explore their function and study the differences among species," she says.

The consortium led by Professor Williams has also published details of a specific molecular tool (called the Buffalo SNP chip) in the journal PLOS ONE. This SNP Chip will allow researchers and breeders to put the genome sequence information into practice. Genes that are involved in important traits related to production and disease can be located and used to estimate the breeding values of individual bulls and cows.

"This will offer buffalo breeders the same opportunities for accelerated genetics selection that is now used by cattle breeders," says Professor Williams.

###

Media Contacts:

Professor John Williams
Director, Davies Research Centre
Roseworthy campus
University of Adelaide
Phone: 61-8-8313-7947
Mobile: 61-488-992-833
[email protected]

Robyn Mills
Media Officer
University of Adelaide
Phone: 61-8-8313-6341
Mobile: 61-410-689-084
[email protected]

Media Contact

Professor John Williams
[email protected]
61-048-899-2833
@UniofAdelaide

http://www.adelaide.edu.au

Related Journal Article

http://dx.doi.org/10.1093/gigascience/gix088

Share12Tweet7Share2ShareShareShare1

Related Posts

Street View Greenspace Boosts Midlife Women’s Heart Health

Street View Greenspace Boosts Midlife Women’s Heart Health

October 12, 2025
Five-Toed Jerboa: Unveiling High-Altitude Adaptation

Five-Toed Jerboa: Unveiling High-Altitude Adaptation

October 12, 2025

Comparing Sex-Specific Brain Structures in Humans and Mice

October 12, 2025

Both Xenopus laevis Sub-Genomes Undergo Similar Evolution

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1220 shares
    Share 487 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stem Cell Hydrogel Boosts Recovery from Radiation Skin Damage

Enhancing 2D Transistors: A New Poly Pitch

Ferroelectric Memristor Memory Revolutionizes AI Training and Inference

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.