• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists unlock genetic code of diseased lung cells to find new treatments for IPF

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CINCINNATI – Researchers cracked the complete genetic code of individual cells in healthy and diseased human lung tissues to find potential new molecular targets for diagnosing and treating the lethal lung disease Idiopathic Pulmonary Fibrosis (IPF).

A team of scientists from Cincinnati Children's Hospital Medical Center, in collaboration with investigators at Cedars-Sinai Medical Center in Los Angeles, publish their findings Dec. 8 in the Journal of Clinical Investigation Insights (JCI Insights).

"This paper identifies a number of novel targets and molecular pathways for IPF, for which there are pharmaceutical approaches," said Jeffrey Whitsett MD, lead investigator and co-director of the Perinatal Institute at Cincinnati Children's. "Airway cells can be obtained by brushing the airway or biopsy, and marker genes can be tested to make a diagnosis or monitor treatment."

IPF is a common and lethal interstitial lung disease in adults, which means it inflames, scars and reconfigures lung tissues. This causes loss of the air sacs, called alveoli, where oxygen and carbon dioxide are normally exchanged. Similar losses of lung function can occur earlier in life, especially in children with diseases caused by mutations in genes critical for surfactant and maintenance of the lung saccules.

Biological processes controlling the formation and function of the lung's alveolar region require precisely orchestrated interactions between diverse epithelial, stromal and immune cells, according to study authors. Despite many years of extensive laboratory studies of whole tissue samples – trying to identify genetic, cellular and molecular processes that fuel lung ailments like IPF – the precise biology has remained elusive.

To overcome this, Whitsett and colleagues – including first author and bioinformatician Yan Xu, PhD of Cincinnati Children's – conducted what they believe to be the first-ever single-cell RNA sequence analysis of normal and diseased human lung tissues (all donated with prior informed consent). This provided the authors with a detailed genetic blueprint of all the different epithelial cell types involved in IPF progression and a window to identify aberrant biological processes driving inflammation and fibrosis.

Analysis of normal lung epithelial cells found gene patterns linked to fully formed alveolar type 2 lung cells (AT2 cells), which are important for the production of surfactant, a substance containing a complex of proteins critical to breathing.

Analysis of diseased IPF cells found genetic markers for lung cells that were in indeterminate states of formation, the authors report. IPF cells had lost the normal genetic control systems needed to guide their functions. This study identifies abnormalities in gene expression that can be targeted for therapy of chronic lung diseases like IPF.

###

Funding support for the research came from the National Institutes of Health (HL122642, HL110967 and HL108793) and the California Institute for Regenerative Medicine (CIRM LA1-06915).

Media Contact

Nick Miller
[email protected]
513-803-6035
@CincyChildrens

http://www.cincinnatichildrens.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

High-performance transparent-flexible electronic devices based on copper-graphene nanowire

DGIST Professor Yoonkyu Lee’s research team has developed a high-performance transparent-flexible electronic device based on a copper-graphene nanowire synthesized by scintillation

March 31, 2023
2023 DGIST Commencement

DGIST held a graduation ceremony for the first half of 2023 (Feb.)

March 31, 2023

Do we understand the flickering flames?

March 31, 2023

Can we connect to a virtual world as in the movie “The Matrix”? Microrobot technology has been developed for externally connecting in vivo neural networks.

March 31, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    67 shares
    Share 27 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Extinction of steam locomotives derails assumptions about biological evolution

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DGIST Professor Yoonkyu Lee’s research team has developed a high-performance transparent-flexible electronic device based on a copper-graphene nanowire synthesized by scintillation

DGIST held a graduation ceremony for the first half of 2023 (Feb.)

Do we understand the flickering flames?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In