• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists unlock genetic code of diseased lung cells to find new treatments for IPF

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CINCINNATI – Researchers cracked the complete genetic code of individual cells in healthy and diseased human lung tissues to find potential new molecular targets for diagnosing and treating the lethal lung disease Idiopathic Pulmonary Fibrosis (IPF).

A team of scientists from Cincinnati Children's Hospital Medical Center, in collaboration with investigators at Cedars-Sinai Medical Center in Los Angeles, publish their findings Dec. 8 in the Journal of Clinical Investigation Insights (JCI Insights).

"This paper identifies a number of novel targets and molecular pathways for IPF, for which there are pharmaceutical approaches," said Jeffrey Whitsett MD, lead investigator and co-director of the Perinatal Institute at Cincinnati Children's. "Airway cells can be obtained by brushing the airway or biopsy, and marker genes can be tested to make a diagnosis or monitor treatment."

IPF is a common and lethal interstitial lung disease in adults, which means it inflames, scars and reconfigures lung tissues. This causes loss of the air sacs, called alveoli, where oxygen and carbon dioxide are normally exchanged. Similar losses of lung function can occur earlier in life, especially in children with diseases caused by mutations in genes critical for surfactant and maintenance of the lung saccules.

Biological processes controlling the formation and function of the lung's alveolar region require precisely orchestrated interactions between diverse epithelial, stromal and immune cells, according to study authors. Despite many years of extensive laboratory studies of whole tissue samples – trying to identify genetic, cellular and molecular processes that fuel lung ailments like IPF – the precise biology has remained elusive.

To overcome this, Whitsett and colleagues – including first author and bioinformatician Yan Xu, PhD of Cincinnati Children's – conducted what they believe to be the first-ever single-cell RNA sequence analysis of normal and diseased human lung tissues (all donated with prior informed consent). This provided the authors with a detailed genetic blueprint of all the different epithelial cell types involved in IPF progression and a window to identify aberrant biological processes driving inflammation and fibrosis.

Analysis of normal lung epithelial cells found gene patterns linked to fully formed alveolar type 2 lung cells (AT2 cells), which are important for the production of surfactant, a substance containing a complex of proteins critical to breathing.

Analysis of diseased IPF cells found genetic markers for lung cells that were in indeterminate states of formation, the authors report. IPF cells had lost the normal genetic control systems needed to guide their functions. This study identifies abnormalities in gene expression that can be targeted for therapy of chronic lung diseases like IPF.

###

Funding support for the research came from the National Institutes of Health (HL122642, HL110967 and HL108793) and the California Institute for Regenerative Medicine (CIRM LA1-06915).

Media Contact

Nick Miller
[email protected]
513-803-6035
@CincyChildrens

http://www.cincinnatichildrens.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Asthma Treatments: Fluticasone vs. Beclometasone

November 2, 2025

School Nurses’ Impact on Pediatric Obesity in Saudi Arabia

November 2, 2025

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling SLAMF8’s Role in Prostate Cancer Metastasis

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Asthma Treatments: Fluticasone vs. Beclometasone

School Nurses’ Impact on Pediatric Obesity in Saudi Arabia

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.