• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists unlock crops’ power to resist floods

Bioengineer by Bioengineer
August 31, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tweaking proteins in staple foods could help feed a warming world

IMAGE

Credit: University of Oxford/PNAS

Enzymes that control a plant’s response to lower oxygen levels could be manipulated to make vital crops resistant to the impacts of flooding triggered by climate change, new research shows.

Co-author Dr Mark White in the School of Chemistry at the University of Sydney said: “Climate change is a major global issue, not least for its impact on food security. We hope these findings can help produce flood-tolerant crops to help mitigate the devasting social and economic impact of extreme weather events on food production.”

The research, largely done at the University of Oxford, is published today in the Proceedings of the National Academy of Sciences of the United States of America.

Climate change has increased the number and intensity of global flooding events, threatening food security through significant crop loss. Plants, including staple crops such as rice, wheat and barley, can survive temporary periods of flooding by activating energy pathways that don’t rely on air in response to the low oxygen conditions in water.

These responses are controlled by oxygen-sensing enzymes called the Plant Cysteine Oxidases (PCOs), which use oxygen to regulate the stability of proteins that control gene activity.

The research describes the molecular structures of the PCOs for the first time, identifying chemical features that are required for enzyme activity.

“The results provide a platform for future efforts to manipulate the enzyme function in an attempt to create flood-resistant crops that can mitigate the impact of extreme weather events,” Dr White said.

###

Dr White joined the University of Sydney last year as an Australian Research Council Discovery Early Career Research Award recipient. He was previously a postdoctoral researcher at Novo Nordisk, Denmark, and worked at the University of Oxford’s Chemistry Research Laboratory with Dr Emily Flashman, lead researcher on the Plant Cysteine Oxidases paper published today.

DOWNLOAD images of the research and a photo of Dr White at this link.

RESEARCH available upon request.

INTERVIEWS

Dr Mark White

ARC DECRA Research Fellow, School of Chemistry

The University of Sydney

[email protected]

MEDIA ENQUIRIES

Marcus Strom | [email protected] | +61 423 982 485

DECLARATION

This work was supported by the UK Biotechnology and Biological Research Council New Investigator Grant, the European Research Council and the Italian Ministry of Education University and Research.

Media Contact
Marcus Strom
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.2000206117

Tags: AgricultureBiochemistryBiologyCell BiologyChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025
Wirth Named Fellow of the American Physical Society

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

Energy Savings at Home Are Driven by Attitudes, Not Income

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1209 shares
    Share 483 Tweet 302
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    87 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Behavior Patterns in Chinese Women Aged 40+

Measuring AI: The Power of Algorithmic Generalization

Innovations in Hereditary Angioedema Treatment: Present & Future

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.