• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists unearth another brain-shrinking mammal

Bioengineer by Bioengineer
September 20, 2022
in Health
Reading Time: 3 mins read
0
Mole
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the depths of winter, European moles face an existential problem. Their metabolisms – close to the upper limit of any mammal – require more food than is available during the coldest months. Instead of solving this seasonal dilemma through migration or hibernation, moles have dug into an unusual energy-saving tactic: shrinking their brains. In a new study, a team led by Dina Dechmann from the Max Planck Institute of Animal Behavior reports that European moles reduce their brains by eleven percent in time for winter, and regrow them by four percent by summer. They represent a new group of mammal known to reversibly shrink their brain through a process known as Dehnel’s phenomenon. But the study does more than add another species to the strange canon of brain-shrinking mammals – it gets at the evolutionary mystery of what drives them down this treacherous path. Comparing moles from different climates, the researchers find that Dehnel’s phenomenon is driven by cold conditions rather than food shortage alone. Reducing brain tissue allows the animals to reduce energy consumption and thus survive the cold.

Mole

Credit: Javier Lázaro

In the depths of winter, European moles face an existential problem. Their metabolisms – close to the upper limit of any mammal – require more food than is available during the coldest months. Instead of solving this seasonal dilemma through migration or hibernation, moles have dug into an unusual energy-saving tactic: shrinking their brains. In a new study, a team led by Dina Dechmann from the Max Planck Institute of Animal Behavior reports that European moles reduce their brains by eleven percent in time for winter, and regrow them by four percent by summer. They represent a new group of mammal known to reversibly shrink their brain through a process known as Dehnel’s phenomenon. But the study does more than add another species to the strange canon of brain-shrinking mammals – it gets at the evolutionary mystery of what drives them down this treacherous path. Comparing moles from different climates, the researchers find that Dehnel’s phenomenon is driven by cold conditions rather than food shortage alone. Reducing brain tissue allows the animals to reduce energy consumption and thus survive the cold.

Identified in the 1950s, Dehnel’s phenomenon was first described in the skulls of shrews, which were observed to be smaller in winter and larger in summer. In 2018, Dechmann and colleagues provided the first evidence that that these unusual changes in shrew skulls occurred over the course of an individual’s life. Since then, Dechmann and colleagues have shown that Dehnel’s phenomenon also occurs in stoats and weasels. What these mammals have in common is a lifestyle that puts them on an energetic knife edge.

“They have extremely high metabolisms and year-round activity in cold climates,” says Dechmann. “Their tiny bodies are like turbocharged Porsche engines that burn through energy stores in a matter of hours.”

To the scientists, it was clear that shrinking energetically costly tissue, such as the brain, allows the animals to reduce their energetic needs. “We understood that Dehnel’s phenomenon helps these animals survive when times are tough. But we still didn’t understand what were the real pressure points, the exact environmental triggers, driving this process.”

Now, the team have answered this by studying a new mammal on the metabolic extreme. Measuring skulls in museum collections, the researchers documented how two species of mole – the European mole and the Spanish mole – changed across seasons. They found that the skulls of the European mole shrank by eleven percent in November and regrew by four percent in spring, but those of the Spanish mole didn’t change throughout the year.

Because the species live in vastly different climates, the researchers could pinpoint that weather, not food availability, was responsible for brain change. “If it was just a question of food, then we should see European moles shrinking in winter when food was scarce and Spanish moles shrinking in summer when harsh heat made food scarce,” says Dechmann.

The study findings go beyond answering questions of evolution, offering insights into how our bodies can regenerate after sustaining significant damage. “That three distantly related groups of mammals can shrink and then regrow bone and brain tissue has huge implications for research into diseases such as Alzheimer’s and osteoporosis,” says Dechmann. “The more mammals we discover with Dehnel’s, the more relevant the biological insights become to other mammals, and perhaps even to us.”



Journal

Royal Society Open Science

DOI

10.1098/rsos.220652

Method of Research

Meta-analysis

Subject of Research

Animals

Article Title

Winter conditions, not resource availability alone, may drive reversible seasonal skull size changes in moles

Article Publication Date

7-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Discrepancies Between Creatinine and Cystatin C eGFR Estimates Linked to Clinical Outcomes

November 7, 2025

Mismatch Between Two Kidney Function Tests Signals Increased Risk of Serious Health Issues

November 7, 2025

Improving Care Quality: Lean Healthcare Performance Insights

November 7, 2025

Single-Cell Study Reveals Seminoma Stemness, Metastasis

November 7, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

OSU Develops Revolutionary New Material Advancing Medical Imaging Technology

Discrepancies Between Creatinine and Cystatin C eGFR Estimates Linked to Clinical Outcomes

Mismatch Between Two Kidney Function Tests Signals Increased Risk of Serious Health Issues

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.