• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists uncover novel strategy to target common type of cancer

Bioengineer by Bioengineer
March 26, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Inhibition of a protein called Werner syndrome helicase could be a novel treatment strategy for cancer patients with microsatellite instability-high tumors.

Researchers have identified a protein critical for the survival of a particular type of tumor cell, according to a study published today in eLife.

The findings, originally posted on bioRxiv, suggest that targeting a protein called Werner syndrome helicase (WRN) could represent a novel opportunity for treating a subgroup of cancer patients with microsatellite instability-high (MSI-H) tumors.

MSI is a clinically defined characteristic of cancer cells that harbor defects in DNA mismatch repair (MMR), the system for fixing errors that can occur during DNA replication. Defective MMR and MSI-H is observed in approximately 4% of all cases of human cancer, with particularly high prevalence in colorectal, endometrial and gastric cancers.

Treatment for MSI-H tumors has shifted recently with the approval of the immunotherapies pembrolizumab, nivolumab and ipilimumab. But while these drugs often lead to long-lasting positive responses in MSI-H cancer patients, eventual resistance to immunotherapy means there is still a need for more effective treatments.

“Targeted cancer therapy is based on exploiting the biological systems that tumor cells, but not healthy tissues, rely on for survival,” says senior author Simon Wöhrle, Principal Scientist at Boehringer Ingelheim Regional Center Vienna (RCV), Austria. “Before we can develop new treatments against MSI-H cancer cells, we first need to understand what it is that helps them to survive and thrive.”

The team used MSI-H cancer-cell profiling and recent functional screening data of cell lines to help answer this question. They demonstrated that removing the function of WRN from MSI-H cells prevented them from working properly and caused defects in cell division. “In particular, we saw that WRN-depleted MSI-H cancer cell lines displayed chromosome breaks and genome instability, highlighting WRN as a novel vulnerability of MSI-H cells,” explains co-senior author Mark Petronczki, Director Cancer Cell Signaling at Boehringer Ingelheim RCV.

As WRN loss is known to cause Werner syndrome, a premature aging disease associated with an increased lifetime risk of developing tumors, it has previously been suggested that the protein plays a key role in suppressing tumors. However, in contrast to this idea, the current results show that WRN possesses a striking pro-survival function for specific cancer cells.

“We’ve shown the power of combining deep functional genomic screen data with tumor cell-line profiling to identify new targets in oncology,” concludes co-senior author Mark Pearson, Vice President at Boehringer Ingelheim RCV. “Our results indicate that pharmacological inhibition of WRN function might serve as a novel targeted therapeutic strategy in MSI-H cancer to help meet demand for more effective drugs.”

###

Reference

The paper ‘Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells’ can be freely accessed online at https://doi.org/10.7554/eLife.43333. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

This study was originally published as a preprint on bioRxiv, at https://www.biorxiv.org/content/10.1101/530659v1.

Media contact

Emily Packer, Senior Press Officer

eLife

[email protected]

01223 855373

About eLife

eLife is a non-profit organisation inspired by research funders and led by scientists. Our mission is to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Cancer Biology, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

To read the latest Cancer Biology research published in eLife, visit https://elifesciences.org/subjects/cancer-biology.

Media Contact
Emily Packer
[email protected]

Related Journal Article

https://elifesciences.org/for-the-press/b350305d/scientists-uncover-novel-strategy-to-target-common-type-of-cancer
http://dx.doi.org/10.7554/eLife.43333

Tags: BiologycancerMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

LEMD3 Shapes 3D Chromatin to Preserve Vascular Identity

October 3, 2025

Mastectomy Associated with Decline in Sexual Health and Body Image Following Surgery

October 3, 2025

Study Finds Over 40% of Drivers Killed in Crashes Test Positive for THC

October 3, 2025

MTCH2 Controls CPT1 to Regulate Adipocyte Lipids

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Untreated Depression Worsens Surgical Outcomes in Cancer Patients, Study Finds

LEMD3 Shapes 3D Chromatin to Preserve Vascular Identity

Keck Medicine of USC Enhances Access to Premier Healthcare Services in Pasadena

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.