• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists translate brain signals into speech sounds

Bioengineer by Bioengineer
April 24, 2019
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NIH BRAIN Initiative-funded project could improve quality of life for paralyzed patients

Scientists used brain signals recorded from epilepsy patients to program a computer to mimic natural speech–an advancement that could one day have a profound effect on the ability of certain patients to communicate. The study was supported by the National Institutes of Health’s Brain Research through Advancing Innovative Technologies (BRAIN) Initiative.

“Speech is an amazing form of communication that has evolved over thousands of years to be very efficient,” said Edward F. Chang, M.D., professor of neurological surgery at the University of California, San Francisco (UCSF) and senior author of this study published in Nature. “Many of us take for granted how easy it is to speak, which is why losing that ability can be so devastating. It is our hope that this approach will be helpful to people whose muscles enabling audible speech are paralyzed.”

In this study, speech scientists and neurologists from UCSF recreated many vocal sounds with varying accuracy using brain signals recorded from epilepsy patients with normal speaking abilities. The patients were asked to speak full sentences, and the data obtained from brain scans was then used to drive computer-generated speech. Furthermore, simply miming the act of speaking provided sufficient information to the computer for it to recreate several of the same sounds.

The loss of the ability to speak can have devastating effects on patients whose facial, tongue, and larynx muscles have been paralyzed due to stroke or other neurological conditions. Technology has helped these patients to communicate through devices that translate head or eye movements into speech. Because these systems involve the selection of individual letters or whole words to build sentences, the speed at which they can operate is very limited. Instead of recreating sounds based on individual letters or words, the goal of this project was to synthesize the specific sounds used in natural speech.

“Current technology limits users to, at best, 10 words per minute, while natural human speech occurs at roughly 150 words/minute,” said Gopala K. Anumanchipalli, Ph.D., speech scientist, UCSF and first author of the study. “This discrepancy is what motivated us to test whether we could record speech directly from the human brain.”

The researchers took a two-step approach to solving this problem. First, by recording signals from patients’ brains while they were asked to speak or mime sentences, they built maps of how the brain directs the vocal tract, including the lips, tongue, jaw, and vocal cords, to make different sounds. Second, the researchers applied those maps to a computer program that produces synthetic speech.

Volunteers were then asked to listen to the synthesized sentences and to transcribe what they heard. More than half the time, the listeners were able to correctly determine the sentences being spoken by the computer.

By breaking down the problem of speech synthesis into two parts, the researchers appear to have made it easier to apply their findings to multiple individuals. The second step specifically, which translates vocal tract maps into synthetic sounds, appears to be generalizable across patients.

“It is much more challenging to gather data from paralyzed patients, so being able to train part of our system using data from non-paralyzed individuals would be a significant advantage,” said Dr. Chang.

The researchers plan to design a clinical trial involving paralyzed, speech-impaired patients to determine how to best gather brain signal data which can then be applied to the previously trained computer algorithm.

“This study combines state-of-the-art technologies and knowledge about how the brain produces speech to tackle an important challenge facing many patients,” said Jim Gnadt, Ph.D., program director at the NIH’s National Institute of Neurological Disorders and Stroke. “This is precisely the type of problem that the NIH BRAIN Initiative is set up to address: to use investigative human neuroscience to impact care and treatment in the clinic.”

###

This research was funded by the NIH BRAIN Initiative (DP2 OD008627 and U01 NS098971-01), the New York Stem Cell Foundation, the Howard Hughes Medical Institute, the McKnight Foundation, the Shurl and Kay Curci Foundation, and the William K. Bowes Foundation.

For more information:

National Institute for Neurological Disorders and Stroke – http://www.ninds.nih.gov/

NIH Brain Research through Advancing Innovative Technologies (BRAIN) Initiative – https://www.braininitiative.nih.gov/

The NIH’s Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative is aimed at revolutionizing our understanding of the human brain. It is managed by 10 institutes whose missions and current research portfolios complement the goals of the BRAIN Initiative: NCCIH, NEI, NIA, NIAAA, NIBIB, NICHD, NIDA, NIDCD, NIMH, and NINDS.

NINDS is the nation’s leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH):

NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Media Contact
Carl P. Wonders
[email protected]

Tags: Medicine/HealthneurobiologyRehabilitation/Prosthetics/Plastic Surgery
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Noradrenaline Boosts Amygdala Memory Precision for Similar Events

August 3, 2025
Old Mitochondria Drive Stem Cell Niche Renewal

Old Mitochondria Drive Stem Cell Niche Renewal

August 3, 2025

How the Brain Integrates Multimodal Cues for Direction

August 3, 2025

LONP1 Controls Mitochondrial Folding, Impacts Diabetes

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    48 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NSUN5 Drives Liver Cancer via m5C-EFNA3 Glycolysis

Noradrenaline Boosts Amygdala Memory Precision for Similar Events

Rigid Crosslinker Enables Nondestructive Patterned QLEDs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.