• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists speed up artificial organoid growth and selection

Bioengineer by Bioengineer
November 10, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Speeding up artificial organoid growth, selection

IMAGE

Credit: Daria Sokol/MIPT Press Office

The method currently used to produce stem cell-derived tissues has a very limited throughput. By semi-automating tissue differentiation, researchers from MIPT and Harvard have made the process nearly four times faster, without compromising on quality. Presented in Translational Vision Science & Technology, the new algorithm is also useful for analyzing the factors that affect cell specialization.

The retina is a tissue of the eye that consists of several layers of neurons forming a chain. It senses light and preprocesses visual information before feeding it to the brain.

Because of their limited potential for regeneration, the loss of retinal neurons leads to permanent blindness. Today about 15 million people in the U.S. alone have retinal degenerative diseases. This number is growing, mainly because of population aging.

Medical researchers are pursuing a number of approaches to address retinal health issues. Some of the options are neuroprotection, gene therapy, and cell replacement. While these approaches target different diseases and employ different mechanisms and methodologies, one thing is universally true: Their development requires massive amounts of retinal cells for research purposes.

It is possible to grow retinal tissue in vitro. This involves placing stem cell clusters into a special medium that induces the spontaneous formation of undeveloped neurons, followed by their differentiation into retinal cells. That process produces actual retinal neurons organized as complex tissue, without any external stimulation of development pathways during specialization.

The method has its limitations, though. For one thing, it has to do with the random nature of the initial neuron growth stimulation. A further inconvenience is that it takes 30 days for the artificial retina of a mouse to develop correctly, and up to one year for human organoids. The MIPT-Harvard team made an attempt to address these problems by increasing the number of cells produced and improving their quality.

The researchers compared the quality of the robot- and human-grown cells by producing several thousand retinal tissue samples for automatic processing and the same amount for manual handling. The biologists scanned the welles housing the tissue samples from the first group and analyzed the resulting images with a Python script they wrote to perform that specific task. The program determines the areas in the photos where the glow of the fluorescent protein is the strongest. Since this protein is only produced in developing retinal cells, the high fluorescence intensity points to the parts of the sample with the right tissue. That way the software can determine the amount of developing retina in each organoid.

The automation algorithm was able to optimize cell production by simultaneously testing many systems — without any adverse effect on tissue quality. The approach reduced the time researchers needed for cell processing from two hours to just 34 minutes.

“We implemented automated liquid change during retinal differentiation and showed it had no negative effect on cell specialization,” commented Evgenii Kegeles of the Genome Engineering Lab at MIPT. “We also developed a tool for automatic retina identification and organoid classification, which we showed in action, optimizing cell specialization conditions and monitoring tissue quality.”

“One of our goals in this research has been to scale up cell differentiation to enable a high-throughput tissue production for drug tests and cell transplantation experiments. Automated sample handling makes it possible to reduce the effort on the part of the personnel and produce several times more cells in the same period of time. With some slight modifications, the algorithm would be applicable to other organoids, not just the retina,” Kegeles added.

“Numbers matter: The automation empowered us to produce trillions of retinal neurons for transplantation and we are excited to see the translation of our approach into routine cell manufacture,” commented Petr Baranov from the Schepens Eye Research Institute of Massachusetts Eye and Ear.

###

Media Contact
Alena Akimova
[email protected]

Related Journal Article

http://dx.doi.org/10.1167/tvst.9.10.24

Tags: Biomedical/Environmental/Chemical EngineeringCell BiologyMedicine/HealthOphthalmologyTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

Sleep Deprivation, Taurine, and Gut Health Connection Explored

October 21, 2025
blank

Exercise Combats Depression-Like Effects of Junk Food via Gut-Brain Metabolic Pathways

October 21, 2025

How Menopause Symptoms Impact the Treatment of Traumatic Brain Injuries

October 21, 2025

Psychedelics Alter Time Perception, Opening New Avenues for Therapy

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1269 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    127 shares
    Share 51 Tweet 32

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sleep Deprivation, Taurine, and Gut Health Connection Explored

Exercise Combats Depression-Like Effects of Junk Food via Gut-Brain Metabolic Pathways

How Menopause Symptoms Impact the Treatment of Traumatic Brain Injuries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.