• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists solve big limitation of stratospheric balloon payloads

Bioengineer by Bioengineer
December 1, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How do you cool a large telescope to absolute zero while flying it from a huge balloon at 130,000 feet?

IMAGE

Credit: Nick Bellis

WASHINGTON, December 1, 2020 — Nearly all photons emitted after the Big Bang are now visible only at far-infrared wavelengths. This includes light from the cold universe of gas and dust from which stars and planets form, as well as faint signals from distant galaxies tracing the universe’s evolution to today.

Earth’s atmosphere blocks most of this light, and space missions are an ideal but prohibitively expensive way to explore it. So scientists are turning to huge stratospheric balloons — the size of an entire football stadium — because they are a tiny fraction of the cost.

In Review of Scientific Instruments, from AIP Publishing, Alan J. Kogut, of NASA’s Goddard Space Flight Center, and colleagues found a way to solve a widely recognized limitation of stratospheric balloon payloads, which fly at altitudes of 130,000 feet above 99% of the atmosphere.

“To really peer into the cold universe, you need a large telescope cooled to near absolute zero, flying above Earth’s atmosphere,” Kogut said. “By large, I mean a telescope mirror the size of a living room. Why so cold? Heat from the telescope can wipe out images from deep space, like overexposing a camera. To see faint cold signals from deep space, the telescope must be cooled to 10 K (minus 440 F), only a few degrees above absolute zero.”

It may sound simple in theory, but it is quite difficult to cool a telescope the size of a living room to nearly absolute zero while flying it from a balloon.

“Liquid helium can easily cool the telescope, but keeping it cold means putting the entire telescope into a giant thermos bottle called a dewar,” he said. “A thermos bottle the size of a living room would weigh several tons — more than even the largest balloons can carry.”

This is where the Balloon-Borne Cryogenic Telescope Testbed (BOBCAT) comes in.

“BOBCAT develops technology for ultralight dewars to reduce their weight enough to allow really big ones to fly on a balloon,” said Kogut.

Dewars have an inner cup holding the cold liquid, surrounded by an outer shell. The gap between them has no air within it, a vacuum, to prevent air from carrying heat from the outside world into the cold interior.

A dewar is heavy, because its walls need to hold a vacuum against sea-level air pressure. But a dewar meant to work on a balloon does not need to work at sea level. It must work at 130,000 feet above sea level, where there is almost no air pressure.

The scientists designed a dewar with extremely thin walls, not much thicker than a soda can’s, which can launch at room temperature. It has a valve, so the vacuum gap between the inner cup and outer wall vents during ascent to let air out.

“Once the balloon reaches 130,000 feet, the valve closes to create a proper vacuum space, and it cools the telescope by pumping liquid nitrogen or liquid helium into the dewar from separate storage tanks,” Kogut said. “The storage tanks are small and don’t weigh much. Now, we have a cold telescope above the atmosphere, able to see faint images from the cold or distant universe.”

The first flight was a success, and the next step is to re-fly the payload carrying an ultralight dewar.

###

The article, “The Balloon-Borne Cryogenic Telescope Testbed mission: Bulk cryogenic transfer at 40 km altitude,” is authored by Alan J. Kogut, Thomas Essinger-Hileman, Samuel Denker, Nicholas Bellis, Luke Lowe, and Paul Mirel. The article will appear in Review of Scientific Instruments on Dec. 1, 2020 (DOI: 10.1063/5.0021483). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0021483.

ABOUT THE JOURNAL

Review of Scientific Instruments publishes novel advancements in scientific instrumentation, apparatuses, techniques of experimental measurement, and related mathematical analysis. Its content includes publication on instruments covering all areas of science including physics, chemistry, materials science, and biology. See https://aip.scitation.org/journal/rsi.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0021483

Tags: Chemistry/Physics/Materials SciencesExperiments in SpaceSatellite Missions/ShuttlesSpace/Planetary ScienceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021
IMAGE

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021

Nanodiamonds feel the heat

January 15, 2021

Controlling chemical catalysts with sculpted light

January 15, 2021
Next Post
IMAGE

Selecting best microalgae for biodiesel production

IMAGE

Out of many COVID-19 tests, which one to choose?

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In