• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, September 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists’ report world’s first X-ray of a single atom in Nature

Bioengineer by Bioengineer
May 31, 2023
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of scientists from Ohio University, Argonne National Laboratory, the University of Illinois-Chicago, and others, led by Ohio University Professor of Physics, and Argonne National Laboratory scientist, Saw Wai Hla, have taken the world’s first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement was funded by the U.S. Department of Energy, Office of Basic Energy Sciences and could revolutionize the way scientists detect the materials.

Saw-Wai Hla headshot

Credit: Ohio University

A team of scientists from Ohio University, Argonne National Laboratory, the University of Illinois-Chicago, and others, led by Ohio University Professor of Physics, and Argonne National Laboratory scientist, Saw Wai Hla, have taken the world’s first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement was funded by the U.S. Department of Energy, Office of Basic Energy Sciences and could revolutionize the way scientists detect the materials.

Since its discovery by Roentgen in 1895, X-rays have been used everywhere, from medical examinations to security screenings in airports. Even Curiosity, NASA’s Mars rover, is equipped with an X-ray device to examine the materials composition of the rocks in Mars. An important usage of X-rays in science is to identify the type of materials in a sample. Over the years, the quantity of materials in a sample required for X-ray detection has been greatly reduced thanks to the development of synchrotron X-rays sources and new instruments. To date, the smallest amount one can X-ray a sample is in attogram, that is about 10,000 atoms or more. This is due to the X-ray signal produced by an atom being extremely weak so that the conventional X-ray detectors cannot be used to detect it. According to Hla, it is a long-standing dream of scientists to X-ray just one atom, which is now being realized by the research team led by him.

“Atoms can be routinely imaged with scanning probe microscopes, but without X-rays one cannot tell what they are made of. We can now detect exactly the type of a particular atom, one atom-at-a-time,  and can simultaneously measure its chemical state,” explained Hla, who is also the director of the Nanoscale and Quantum Phenomena Institute at Ohio University. “Once we are able to do that, we can trace the materials down to ultimate limit of just one atom. This will have a great impact on environmental and medical sciences and maybe even find a cure that can have a huge impact for humankind. This discovery will transform the world.”

Their paper, published in the scientific journal Nature (DOI 10.1038/s41586-023-06011-w) on May 31, 2023, and gracing the cover of the print version of the scientific journal on June 1, 2023, details how Hla and several other physicists and chemists, including Ph.D. students at OHIO, used a purpose-built synchrotron X-ray instrument at the XTIP beamline of Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory.

For demonstration, the team chose an iron atom and a terbium atom, both inserted in respective molecular hosts. To detect X-ray signal of one atom, the research team supplemented conventional detectors in X-rays with a specialized detector made of a sharp metal tip positioned at extreme proximity to the sample to collect X-ray excited electrons – a technique known as synchrotron X-ray scanning tunneling microscopy or SX-STM. X-ray spectroscopy in SX-STM is triggered by photoabsorption of core level electrons, which constitutes elemental fingerprints and is effective in identifying the elemental type of the materials directly.

According to Hla, the spectrums are like fingerprints, each one being unique and able to detect exactly what it is.

“The technique used, and concept proven in this study, broke new ground in X-ray science and nanoscale studies,” said Tolulope Michael Ajayi, who is the first author of the paper and doing this work as part of his Ph.D. thesis. “More so, using X-rays to detect and characterize individual atoms could revolutionize research and give birth to new technologies in areas such as quantum information and the detection of trace elements in environmental and medical research, to name a few. This achievement also opens the road for advanced materials science instrumentation.” 

For the last 12 years, Hla has been involved in the development of an SX-STM instrument and its measurement methods together with Volker Rose, a scientist at the Advanced Photon Source at Argonne National Laboratory.

“I have been able to successfully supervise four OHIO graduate students for their Ph.D. theses related to SX-STM method development over a 12-year period. We have come a long way to achieve the detection of a single atom X-ray signature,” Hla said.

Hla’s study is focused on nano and quantum sciences with a particular emphasis on understanding materials’ chemical and physical properties at the fundamental level – on an individual atom basis. In addition to achieving X-ray signature of one atom, the team’s key goal was to use this technique to investigate the environmental effect on a single rare-earth atom.

“We have detected the chemical states of individual atoms as well,” Hla explained. “By comparing the chemical states of an iron atom and a terbium atom inside respective molecular hosts, we find that the terbium atom, a rare-earth metal, is rather isolated and does not change its chemical state while the iron atom strongly interacts with its surrounding.”

Many rare-earth materials are used in everyday devices, such as cell phones, computers and televisions, to name a few, and are extremely important in creating and advancing technology. Through this discovery, scientists can now identify not only the type of element but its chemical state as well, which will allow them to better manipulate the atoms inside different materials hosts to meet the ever-changing needs in various fields. Moreover, they have also developed a new method called “X-ray excited resonance tunneling or X-ERT” that allows them to detect how orbitals of a single molecule orient on a material surface using synchrotron X-rays.

“This achievement connects synchrotron X-rays with quantum tunneling process to detect X-ray signature of an individual atom and opens many exciting research directions including the research on quantum and spin (magnetic) properties of just one atom using synchrotron X-rays,” Hla said.

In addition to Ajayi, several other OHIO graduate students including current Ph.D. students Sineth Premarathna in Physics and Xinyue Cheng in Chemistry, as well as Ph.D. in Physics alumni Sanjoy Sarkar, Shaoze Wang, Kyaw Zin Latt, Tomas Rojas, and Anh T. Ngo, currently an Associate Professor of Chemical Engineering at the University of Illinois-Chicago, were involved in this research. College of Arts and Sciences Roenigk Chair and Professor of Chemistry Eric Masson designed and synthesized the rare earth molecule used in this study.

Going forward, Hla and his research team will continue to use X-rays to detect properties of just one atom and find ways to further revolutionize their applications for use in gathering critical materials research and more.



Journal

Nature

DOI

10.1038/s41586-023-06011-w

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Characterization of just one atom using synchrotron X-rays

Article Publication Date

31-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Schematic application of AEM with multiple cationic side alkyl chains

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023
16x9-33704D_0426_CPA_C-STEEL_WEB

Department of Energy funds new center for decarbonization of steelmaking

September 29, 2023

Ghent University’s research team envisions a bright future with active machine learning in chemical engineering

September 29, 2023

Teams invent a new metallization method of modified tannic acid photoresist patterning

September 29, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

Hairy polymer balls help get genetic blueprints inside T-cells for blood cancer therapy

New study will examine irritable bowel syndrome as long COVID symptom

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In