• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists report differences in dopamine signals in patients with history of alcohol use disorder

Bioengineer by Bioengineer
February 7, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WINSTON-SALEM, N.C. – Feb. 7, 2023 – Dopamine is a neurotransmitter that’s made in the brain and acts as a chemical messenger, communicating between nerve cells in the brain and the rest of the body. Dopamine can impact how people think and feel. While it’s most often associated with being a “feel-good” hormone, its role in functions such as movement, cognition and learning is an area of current research. Researchers are also working to better understand the impact that substance abuse or addiction disorders have on dopamine levels and behavior.

Kenneth T. Kishida, Ph.D. and Brittany Liebenow

Credit: Wake Forest University School of Medicine

WINSTON-SALEM, N.C. – Feb. 7, 2023 – Dopamine is a neurotransmitter that’s made in the brain and acts as a chemical messenger, communicating between nerve cells in the brain and the rest of the body. Dopamine can impact how people think and feel. While it’s most often associated with being a “feel-good” hormone, its role in functions such as movement, cognition and learning is an area of current research. Researchers are also working to better understand the impact that substance abuse or addiction disorders have on dopamine levels and behavior.

In a new study from Wake Forest University School of Medicine, scientists have demonstrated that the connection between dopamine and counterfactual information, which is related to the psychological notions of regret and relief, appears altered by alcohol use disorder.

The findings appear in the February issue of the Journal of Neurosurgery.

Kenneth T. Kishida, Ph.D., associate professor of physiology and pharmacology and neurosurgery at Wake Forest University School of Medicine, studies neurotransmitters and their role in human behavior and decision-making. Using fast scan cyclic voltammetry, an electrochemical technique, Kishida’s team can detect and measure serotonin and dopamine in real-time. Taking these measurements is very challenging and can only be done during invasive procedures such as deep-brain stimulation (DBS) brain surgery, which is commonly used to treat conditions such as epilepsy, Parkinson’s disease, essential tremor and obsessive-compulsive disorder.

For this study, Kishida’s team collaborated with neurosurgeons Stephen B. Tatter, M.D., and Adrian W. Laxton, M.D., to insert a carbon fiber microelectrode deep into the brain of four participants at Atrium Health Wake Forest Baptist Medical Center who were scheduled to receive DBS to treat their movement disorders. Two of the participants had a history of alcohol use disorder, and two did not.

While the participants were awake in the operating room, they played a simple computer game. As they played the game, dopamine measurements were taken in the striatum, the part of the brain that controls cognition, reward and coordinated movements.

“We measured dopamine once every 100 milliseconds during a sequence of fairly simple decisions,” Kishida said.

The game involved a series of choices between sure bets or 50%-chance gambles for small amounts of money. Each task involved one simple decision. On one side of the screen, the patient saw one number, a “sure bet.” If the study participant selected the sure bet, they would “win” that amount.  On the other side of the screen, the participant saw two numbers, which were separated by a line. This was the gamble outcome, and the participant would “win” either of the two numbers with an equal 50% chance.

“Sometimes taking the gamble was technically the better outcome, but sometimes, it wasn’t,” Kishida said. “We were able to assess how the participants made choices and what dopamine was doing as they did so.”

The research team found distinct differences in how the brain releases dopamine based on participants’ alcohol use disorder history. Dopamine levels in participants with alcohol use disorder, following game outcomes associated with relief, were lower than in patients without alcohol use disorder.

“We’ve shown before that dopamine levels in humans seems to track information related to regret and relief,” Kishida said. Previous research suggests that learning from regret is impaired in patients with alcohol use disorder.

“In our study, dopamine measurements, at these really fast timescales, appear altered in patients with a history of alcohol use disorder. When their choice was the best it could have been, we see dopamine levels falling when we expected it to increase like we observed in patients without alcohol use disorder,” Kishida said.

Kishida acknowledged that a major limitation of the study is the limited sample size.

“Much more work is needed,” Kishida said. “However, to my knowledge, these represent the first investigations of dopamine signals on sub-second timescales in humans with alcohol use disorder.”

Kishida said larger studies are needed to gain more insight on these fast chemical fluctuations in the human brain, what they mean for decision-making processes and whether they are altered in humans with addiction disorders.

This study was supported by grants from the National Institutes of Health: R01DA048096, P50DA006634, R01MH121099, R01MH124115, KL2TR001420, P50AA026117 and F30DA053176.

 



Journal

Journal of Neurosurgery

DOI

10.3171/2022.11.FOCUS22614

Method of Research

Randomized controlled/clinical trial

Subject of Research

People

Article Title

Intracranial subsecond dopamine measurements during a “sure bet or gamble” decision-making task in patients with alcohol use disorder suggest diminished dopaminergic signals about relief

Article Publication Date

1-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Tsimané woman and child

For clues to healthy brain aging, look to the Bolivian Amazon

March 20, 2023
Dr. Donald Kohn

UCLA-led study uses base editing to correct mutation that causes rare immune deficiency

March 20, 2023

Scientists use tardigrade proteins for human health breakthrough

March 20, 2023

Inbreeding contributes to decline of endangered killer whales

March 20, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    61 shares
    Share 24 Tweet 15
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The Minderoo-Monaco Commission on Plastics and Human Health issues sweeping new report

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In