• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists reminded immune cells on what side they should be

Bioengineer by Bioengineer
June 7, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

These cells can weaken the body reaction against the tumor and decrease cancer treatment efficiency

International group of scientists in the joint study of the laboratory of the Wistar Institute, University of Pittsburgh and I.M. Sechenov First Moscow State Medical University discovered the change in activity of one of the immune cells types called neutrophils during the cancer development: they begin to prevent other immune cells from fighting tumor and thus decelerate treatment. The scientists found protein causing such changes and demonstrated that suppressing its activity in the cells allows to delay cancer development. The research details are published in Nature.

The study is focused on myeloid-derived suppressor cells (MDSCs) developing from neutrophils. In some cases (e.g. in cancer, during inflammation or autoimmune diseases), these immune cells start to fight against other immune cells instead of bacteria and fungi. Thus they weaken the body reaction against the tumor and decrease cancer treatment efficiency.

“If you need a simple comparison – remember a very well-known fairy-tale by Hans Christian Andersen “The Snow Queen” where the little Sister traveled to the North Pole to waken-up her Brother whose heart was frozen by the Queen. The sincere, bitter and warm tears of the little Sister melted the frozen Brother’s heart and reminded him about his past happy life at home. Well, that’s approximately what we do: we recall the memories of neutrophils to work as good immune cells against the tumor not for it,” commented Valerian Kagan, one of the study leaders, the head of research laboratories of University of Pittsburgh and Sechenov University.

Despite the fact that the activity of MDSCs complicates the treatment, the mechanisms responsible for its change are still poorly studied. Earlier research showed that during oncological disease polyunsaturated fats (lipids) accumulate in some types of immune cells, so the scientists decided to check whether the dysfunction of lipid metabolism in neutrophils is linked to changes in their activity. They compared the fat content in the cells of healthy mice and animals with different types of cancer, and the latter group had much higher amount of fat.

After that scientists led by professor Dmitry Gabrilovich at the Wistar Institute looked at the difference between the activity (expression) of genes in suppressor cells in healthy and sick mice. They were especially interested in genes that encode proteins carrying fatty acids through the cell wall. A great difference was observed in the activity of the Slc27a2 gene encoding one of these proteins, FATP2, the activity of other genes did not differ. Increased FATP2 content in cancer was present in people as well. These were patients with different types of cancer.

Then the researchers checked whether FATP2 is able to somehow affect the activity of neutrophils. They compared the rate of tumor growth in mice with “deactivated” and activated Slc27a2 and found that in the former group the disease developed more slowly. The scientists also checked whether the efficiency of such therapy depends on other diseases. Experiments showed that if the animal has immunity dysfunction, the treatment gave much smaller results. Besides, the combination of this type of therapy with the suppression of the production of immune checkpoints – molecules that weaken the immune response – showed good efficiency. The activity of checkpoints is useful during autoimmune diseases, but undesirable in cancer.

“One of the contemporary trends in anticancer therapy is immune therapy. This is a type of treatment when pharmaceuticals do not kill tumor cells directly but instead stimulate the body’s natural defenses to fight the cancer. Among treatments of this kind, elimination of the modified immune cells in the tumor microenvironment that are reprogrammed to suppress the normal immune surveillance is a very promising approach. Our study published in Nature describes research of this type that attempts to encourage neutrophils to “recall their important immune functions.” Based on the conducted research and deciphered mechanisms, the successful treatment has been proposed and achieved using experimental models of tumor-bearing animals,” added Valerian Kagan.

The authors of the articles also highlighted the mechanism by which FATP2 can affect the activity of neutrophils: it facilitates the accumulation of some fatty acids, particularly arachidonic acid, and one of its derivatives, prostaglandin E2 (PGE2) in the cells. The last substance, as shown earlier, causes changes in cell activity.

Thus, the authors managed to show that FATP2 protein plays a crucial role in changing of neutrophil activity and accelerating the development of cancer. The fact that FATP2 is synthesized in large quantities near the tumor allows to influence selectively on suppressor cells and to avoid strong side effects.

###

In the research, scientists from Sechenov University collaborated with colleagues from the Wistar Institute (Professor Dmitry Gabrilovich), University of Pittsburgh, University of Nebraska-Lincoln, Duke University School of Medicine, University of Pennsylvania School of Medicine and Helen F. Graham Cancer Center.

Media Contact
Nataliya Rusanova
n_rusanova_@mail.ru
http://dx.doi.org/10.1038/s41586-019-1118-2

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.