• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, September 26, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Scientists prove how genetics change behavior by studying worms’ foraging strategies

Bioengineer by Bioengineer
November 1, 2016
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Laboratory of Neural Circuits and Behavior at The Rockefeller University/Nature

"Organisms pay attention to what other members of their species are doing," says Cori Bargmann, a neuroscientist at Rockefeller University. "It's a very robust phenomenon that you see from humans on Twitter to bacteria, and everything in between."

That's why Bargmann, Torsten N. Wiesel Professor and head of Rockefeller University's Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, and her coworkers set out to understand how animals are incorporating social information into their behavior. Their most recent study pinpoints genome variations that allow animals to use information about their competitors to modify their innate strategies for searching for food. These findings provide concrete evidence for game theory, which suggests, among other things, that population density changes how individuals act.

In the study, Bargmann and her collaborators designed a series of experiments using Caenorhabditis elegans, a tiny roundworm with easily detectable habits. The worms interact with one another by secreting and sensing pheromones. "The advantage to using a simple organism like C. elegans is that you can look at questions in great detail," Bargmann says. "But some principles that emerge may apply to all species, including humans."

An unexpected role for pheromones

In the wild, C. elegans worms in the quest for food alternate between an exploratory behavior called roaming and a less active behavior called dwelling, where the worms essentially "hunker down and eat," Bargmann says. By exploring the differences in the worms' behavior in various settings, the researchers found a new role for pheromones called ascarosides. These signaling molecules control behaviors like male sexual activity. (C. elegans are self-fertilizing hermaphrodites, but some do have sex–though worms tend to get lucky only once every 100 generations.) But Bargmann found the pheromone also seemed to help the animals modify their behaviors based on how many worms were nearby.

With further experimental analysis, the scientists identified two distinct genetic variants that resulted in these sensitivity differences, suggesting that in crowded places, wild C. elegans populations with a specific genetic variation adopt different behaviors than those who don't. The variants that are insensitive make less of a key protein that senses ascarosides in their olfactory system than those that are sensitive.

Evolution and social behavior

"The big take home," Bargmann says, "is that one of the ways behavior evolves is through the appearance of genetic changes that affect sensory capabilities. We have every reason to believe that human behaviors have been shaped in a similar way." The findings also suggest that natural trait variations are the result of both environmental cues and genetic changes.

For example, reptiles don't eat sugar, and have lost their sweet-tasting receptors during the course of evolution. But hummingbirds evolved from reptiles, and they can nevertheless taste sugar–meaning they had to evolve a brand new taste receptor. "This is an evolutionary change in sensitivity, matched to diet," Bargmann says. "We're seeing something similar in the C. elegans pheromone sensitivity as well."

She says, "It may be that behavior is shaped in an ongoing way by variations in the genome that affect our sensitivity to the external world. There's so much more to learn about genetic variations that may lead to differences in behavior."

Either way, Bargmann says, "The recognition that population density is a regulator of behavioral strategies may provoke thought about human behavior's links to its animal origins."

###

Media Contact

Katherine Fenz
[email protected]
212-327-7913
@rockefelleruniv

http://www.rockefeller.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Why endangered wildlife needs AML law coverage and banks need to share IWT intelligence

NASA’s Interstellar Mapping and Acceleration Probe passes system integration review

National Science Foundation taps Worcester Polytechnic Institute fire protection expertise and resources for the Wildfire Interdisciplinary Research Center

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In