• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists proposed a novel configuration of nanoscopes

Bioengineer by Bioengineer
May 23, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Special diffraction gratings with gold plates instead of microlenses can accelerate the generation of images in nanoscopes

IMAGE

Credit: Tomsk Polytechnic University

Scientists from Tomsk Polytechnic University together with colleagues proposed using special diffraction gratings with gold plates instead of microlenses used in the classic configuration to obtain images in nanoscopes. Microlenses transmit images by small pieces (pixels), whereas diffraction gratings allow you to see the whole object. Such innovation can help to accelerate the generation of images from nanoscopes without losing any magnification power. The results of the study are presented in the journal Annalen der Physik.

Optical microscopes are considered the simplest. However, for a long time it was believed that they are not powerful enough compared to, for example, electronic microscopes. Everything changed with the advent of nanoscopes in 2011. Images are obtained using small spheres or rectangular particles of quartz glass and enlarged further with a conventional microscope lens. Through nanoscopes it is possible to see objects the size of which is 50 nm, which exceeds the capabilities of a conventional optical microscope by 20 times. They can also be used to study living viruses, as compared to electronic microscopes lacking this function because the flow of electrons just kills them, and the inside of cells. This feature makes nanoscopes extremely promising for biological research. Therefore, scientists around the world are working to improve their resolution and design.

However, images in nanoscopes is formed by ‘pieces’, i.e. each microsphere detects its part of an object at a particular point. Therefore, it is necessary to make a whole matrix of a large number of microspheres or to move a microsphere, which takes some time.

As a solution, TPU scientists proposed using a rectangular mesoscale phase diffraction grating (a grating with a period comparable to the wavelength of the radiation used). This is an optical device that is a surface with a large number of parallel microscopic strokes or protrusions.

The project supervisor, Igor Minin, DSc in technical sciences, SRF at the TPU Division of Electronic Engineering says:

‘A conventional diffraction grating out of dielectric ensures poor resolution in nanoscopes. Therefore, we propose to add a small gold plate to each of the strokes. In fact, a paradox emerges: metal does not transmit light but the resolution nevertheless increases. Why? Here several effects work simultaneously.

These are the effect of abnormal amplitude apodization, the Fabry-Perot resonance, and the Fano resonance. Together they help to improve resolution compared to a conventional diffraction grating up to 0.3 λ. This is about the same solution as that of nanoscopes with spherical particles.’

Now, the researchers are tasked to verify the simulation data during experiments.

###

The article was published in Annalen der Physik in collaboration with the scientists from Tomsk State University and V.E. Zuev Institute of Atmospheric Optics SB RAS.

Media Contact
Kristina Nabokova
[email protected]

Original Source

https://news.tpu.ru/en/news/2019/05/20/34804/

Related Journal Article

http://dx.doi.org/10.1002/andp.201900033

Tags: Cell BiologyOpticsTechnology/Engineering/Computer ScienceVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

September 10, 2025
blank

A Decade Later: Gravitational Waves Confirm Stephen Hawking’s Black Hole Area Theorem

September 10, 2025

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

September 10, 2025

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    59 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Faster Diagnostic Scans Could Revolutionize Prostate Cancer Detection for Millions

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

Designed to Learn: How Early Brain Structure Sets the Stage for Efficient Learning

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.