• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists propose nano-confinement strategy to form sub-nanometer reactors

Bioengineer by Bioengineer
September 4, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: LIANG Ji

Single-atom catalysts (SACs) are promising in electrocatalysis processes due to their maximum utilization of active species.

However, manipulation of these atomic-scale active sites to satisfy specific reactions is still an essential bottleneck due to their isolation features.

Prof. LIU Jian from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences and his collaborators proposed a nano-confinement strategy to host multiple Fe and Cu single atoms inside the extremely narrow yet regular surface cavities of graphitic carbon nitride to form “sub-nanometer reactors”.

The study was published in Advanced Materials on Sept. 2.

“These Fe and Cu atoms, highly confined in the sub-nanometer reactors, not only provide stronger interaction with the reactants but also, more importantly, lead to significant synergetic effect due to their unique microenvironments in this extremely narrow space, which is highly favorable for catalysis, especially the tandem processes such as the nitrogen reduction reaction,” said Prof. LIANG Ji from Tianjin University, a co-author of the study.

“This is the first time that we successfully and conceptually push the nanoreactors towards a much smaller dimension to form sub-nanometer reactors, which brings distinctively different properties from the conventional nanoreactors,” added by Prof. LIU.

“First principle simulation reveals that this synergistic effect originates from the unique Fe-Cu coordination, which effectively modifies N2 absorption, improves electron transfer, and offers extra redox couples for nitrogen reduction reaction,” said Prof. SUN Chenghua from Swinburne University of Technology, another co-author of the study.

The researchers found that this significant synergy caused by the multiple confined atoms led to significant performance enhancement for the model electrocatalytic process, the nitrogen reduction reaction (NRR).

Improvements in terms of high ammonia yield and efficiency that are much higher in comparison with the mono-metal counterparts have been achieved.

This concept of constructing sub-nanometer reactors not only provides a new strategy of manipulating catalysts active centers at the subnanometer scale, but also sheds light on the design of novel catalysts with a precision spatial location at the sub-nanometer scale for a wide spectrum of catalytic reactions as well.

###

Media Contact
WANG Yongjin
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1002/adma.202004382

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

When Electrons Harmonize and Perceive Their Surroundings

When Electrons Harmonize and Perceive Their Surroundings

October 30, 2025
blank

Industry-Compatible Methods Enable Superconducting Germanium Production

October 30, 2025

Harnessing Computational Power to Predict Optimal Ligands for Generating Reactive Alkyl Ketone Radicals in Organic Synthesis

October 30, 2025

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1291 shares
    Share 516 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34
/div>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Physiotherapy Approaches for Post- and Long-COVID Care

Study Reveals Common Misconceptions Among Americans About Alcohol and Cancer Risk

Streamlined CRISPR Evaluation Boosts Rare Variant Discovery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.