• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, February 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists propose a new heavy particle similar to the Higgs boson

Bioengineer by Bioengineer
February 23, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of scientists proposes a new heavy particle with properties similar to those of the Higgs boson

IMAGE

Credit: university of granada

Unlike the Higgs boson, discovered at CERN’s Large Hadron Collider in 2012 after a 40-year quest, the new particle proposed by these researchers is so heavy that it could not be produced directly even in this collider

The University of Granada is among the participants in this major scientific advancement in Theoretical Physics, which could help unravel the mysteries of dark matter

Scientists from the University of Granada (UGR) and the Johannes Gutenberg University Mainz (Germany) have recently published a study in which they endeavour to extend the Standard Model of particle physics (the equivalent of ‘the periodic table’ for particle physics) and answer some of the questions that this model is unable to answer. Such puzzles include: What is dark matter made of? Why do the various constituents of fermionic dark matter have such different masses? Or, why is the force of gravity much weaker than electromagnetic interaction?

This work, published in the European Physical Journal C, is based on the existence of a dimension in spacetime that is “so small that we can only detect evidence of it through its indirect effects,” explains one of the authors of the article, Adrián Carmona, Athenea3i Fellow at the UGR and a member of the Department of Theoretical Physics and the Cosmos.

As early as the 1920s, in an attempt to unify the forces of gravity and electromagnetism, Theodor Kaluza and Oskar Klein speculated on the existence of an extra dimension beyond the familiar three space dimensions and time (which, in physics, are combined into a 4-dimensional spacetime).

Such models became popular in the 1990s, when theoretical physicists realized that theories with curved extra dimensions could explain some of the major mysteries in this field. However, despite their many strengths, such models generally lacked a viable dark-matter candidate.

Now, more than 20 years later, Adrián Carmona and collaborators from the University of Mainz, Professor Matthias Neubert and doctoral student Javier Castellano, have predicted the existence of a new heavy particle in these models with properties similar to those of the famous Higgs boson.

A new dimension

“This particle could play a fundamental role in the generation of masses of all the particles sensitive to this extra dimension, and at the same time be the only relevant window to a possible dark sector responsible for the existence of dark matter, which would simultaneously solve two of the biggest problems of these theories that, a priori, appear disconnected,” explains the UGR researcher.

However, unlike the Higgs boson, which was discovered at CERN’s Large Hadron Collider in 2012 after a 40-year quest, the new particle proposed by these researchers is so heavy that it could not be produced directly even in this, the highest-energy particle collider in the world.

In the article, the researchers explore other possible ways of discovering this particle by looking for clues about the physics surrounding a very early stage in the history of our universe, when dark matter was produced.

###

Bibliography:

Carmona, A., Castellano Ruiz, J. & Neubert, M. (2021) ‘A warped scalar portal to fermionic dark matter’, Eur. Phys. J. C 81, 58. https://doi.org/10.1140/epjc/s10052-021-08851-0

https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-021-08851-0

Media Contact
Adrián Carmona Bermúdez
[email protected]

Original Source

https://canal.ugr.es/uncategorized/an-international-team-of-scientists-proposes-a-new-heavy-particle-with-properties-similar-to-those-of-the-higgs-boson/

Related Journal Article

http://dx.doi.org/10.1140/epjc/s10052-021-08851-0

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Scientists use Doppler to peer inside cells

February 25, 2021
IMAGE

Nuclear physicists on the hunt for squeezed protons

February 25, 2021

Scientists investigated more thoroughly Walker breakdown in 3D magnetic nanowires

February 25, 2021

NTU scientists develop laser system that generates random numbers at ultrafast speeds

February 25, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    637 shares
    Share 255 Tweet 159
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    37 shares
    Share 15 Tweet 9
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsMedicine/HealthcancerEcology/EnvironmentPublic HealthBiologyClimate ChangeGeneticsChemistry/Physics/Materials SciencesCell BiologyTechnology/Engineering/Computer ScienceInfectious/Emerging Diseases

Recent Posts

  • Lethal house lures reduce incidence of malaria in children
  • Landmark study details sequencing of 64 full human genomes to better capture genetic diversity
  • Scientists use Doppler to peer inside cells
  • Nuclear physicists on the hunt for squeezed protons
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In