• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists propose a flexible interface design for silicon-graphite dual-ion battery

Bioengineer by Bioengineer
March 10, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SIAT


Silicon is abundant in nature with high theoretical capacity (4200 mAh g-1), making it an ideal anode material for improving the energy density of dual-ion batteries (DIBs). However, its application in DIBs has been restricted by the large volume expansion problem (>300%).

Rigid contacts between silicon and current collectors, commonly made with metal foils, lead to significant interfacial stress. As a consequence, interface cracking and even exfoliation of active materials occur resulting in suboptima cycling performance.

A research group led by Prof. TANG Yongbing and his team members (Dr. JIANG Chunlei, XIANG Lei, MIAO Shijie etc.) from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences, along with Prof. ZHENG Zijian from the Hong Kong Polytechnic University, have proposed a flexible interface design to reduce alloying stress on silicon anodes in silicon-graphite DIBs.

This flexible interface design modulates stress distribution via the construction of a silicon anode on a soft nylon fabric modified with a conductive Cu-Ni transition layer, thus endowing the silicon electrode with remarkable flexibility and stability over 50,000 bends.

Assembly of the flexible silicon anode with an expanded graphite cathode yielded a silicon-graphite DIB (SGDIB) having record-breaking rate performance (up to 150 C) and cycling stability over 2000 cycles at 10 C with capacity retention of 97%.

Moreover, the SGDIB showed high capacity retention of about 84% after 1500 bends and a low self-discharging voltage loss of 0.0015% per bend after 10,000 bends, indicating strong potential for high-performance, flexible energy-storage applications.

###

The study, entitled “Flexible Interface Design for Stress Regulation of a Silicon Anode toward Highly Stable Dual-Ion Batteries,” was published online in Advanced Materials.

Media Contact
ZHANG Xiaomin
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1002/adma.201908470

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    75 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Smartphone Measures Vasomotor Function via Fingertip Elasticity

Fecal Transplants Show Promise for Anorexia Treatment

ICU Nurses’ Resilience Shields Against Compassion Fatigue

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.