• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists predict the size of plastics animals can eat

Bioengineer by Bioengineer
March 27, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New equation could help determine risk of plastics to any species — and amount of plastic entering food chains

IMAGE

Credit: Cardiff University


A team of scientists at Cardiff University has, for the first time, developed a way of predicting the size of plastics different animals are likely to ingest.

The researchers, from the University’s Water Research Institute, looked at the gut contents of more than 2,000 animals to create a simple equation to predict the size of a plastic item an animal can eat, based on the length of its body.

In the study, published today in Nature Communications, they report that the length of an animal can be used to estimate the biggest piece of plastic it can eat – and this was about 5% (a twentieth) of the size of the animal.

The researchers say that as the plastic pollution problem escalates, it is vital to be able to quickly assess the risk of plastics to different species around the world.

This work could also help scientists measure the risk of plastic pollution to ecosystems and food supplies – and ultimately the risk to human health.

By trawling through published data, the team found plastics ingested by marine and freshwater mammals, reptiles, fishes and invertebrates, from 9mm-long fish larvae to a 10m-long humpback whale.

During their research they found some shocking examples of the extent of plastic pollution, including hosepipes and flower pots in a sperm whale, plastic banana bags inside green turtles and a shotgun cartridge in a True’s beaked whale.

Co-lead author of the study Dr Ifan Jâms said: “We still know very little about the way most animals feed in the wild, so it’s difficult to figure out how much plastic they could be eating.

“This information gives us a way to start measuring the extent of the plastic pollution problem.

“We hope this study lays a foundation for including the ‘ingestibility’ of plastics into global risk assessments.

“We also hope this work will encourage more sophisticated assessments of the amount of plastic that may be moving into global ecosystems and food supplies.”

Project leader Professor Isabelle Durance said: “All of us will have seen distressing, often heart-breaking, images of animals affected by plastic, but a great many more interactions between animals and plastic are never witnessed. This study gives us a new way of visualising those many, many unseen events.

“While we understand increasingly where concentrations of plastic in the world’s aquatic ecosystems are greatest, it’s only through work like this that we can know which animals are likely to be in danger from ingesting it.

“Through this work, we can also begin to understand how much plastic is entering global food webs or human foods, for example, because we know the general sizes of plastic likely to be taken in by zooplankton or fishes.

“We recognise that our research is part of wider efforts and there is still more work to do to quantify the risks from smaller plastic fragments or to understand the damage caused by plastic ingestion, but we hope this work helps the world to address its growing plastic problem.”

The researchers said further work was needed to look at how and where terrestrial animals eat plastic to predict wider risks.

###

Media Contact
Gerry Holt
[email protected]
029-208-75596

Original Source

https://www.cardiff.ac.uk/news/view/1902705-scientists-predict-the-size-of-plastics-animals-can-eat

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-15406-6

Tags: BiologyEcology/EnvironmentMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

COP6 Decision on Dental Amalgam Advances Equity-Focused, Patient-Centered Care

COP6 Decision on Dental Amalgam Advances Equity-Focused, Patient-Centered Care

November 7, 2025
Exploring Metabolic Resistance in Malaria’s Anopheles coluzzii

Exploring Metabolic Resistance in Malaria’s Anopheles coluzzii

November 7, 2025

Synchronizing Engineered Cells with Nature’s Blueprint

November 7, 2025

Selective Glycosylation Enzymes in Mouse Kidney Unveil New Paths for Disease Research

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Sodium-Glucose Cotransporter 2 Inhibitors Varies by Diabetes Status and Albuminuria Levels

Charting Parkinson’s Disease Therapeutics Development Pathway

Developing Robust Supply Strategies for Graphite: Insights from Rice University Experts on This Essential Mineral for Energy Storage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.