• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists make advance in breeding high resistant starch rice

Bioengineer by Bioengineer
May 8, 2023
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have shown that the loss of function of two paralogous starch biosynthetic genes contributes to an increase in resistant starch (RS) content in cooked rice, providing insights into the generation of high-RS varieties in rice and possibly other cereals.

Model of high-RS rice breeding through deficiency of SSIIIa and SSIIIb

Credit: IGDB

Scientists have shown that the loss of function of two paralogous starch biosynthetic genes contributes to an increase in resistant starch (RS) content in cooked rice, providing insights into the generation of high-RS varieties in rice and possibly other cereals.

This study, conducted by Prof. LI Jiayang’s team from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences and Prof. WU Dianxing’s team from the Zhejiang University, was published online in PNAS on May 1.

Sedentary lifestyles and long-term overeating lead to obesity, type 2 diabetes, and related complications, which have become a major threat to global health. This incidence could potentially be reduced through appropriate dietary approaches by regulating glucose homeostasis.

In contrast with rapidly digested starch, RS is a type of special starch that cannot be digested in the small intestine but is transferred to the large intestine for slow fermentation, which is beneficial to intestinal health and may improve various related conditions, such as inflammatory bowel disease, insulin resistance and type 2 diabetes, and weight management.

Rice is an excellent source of starch, but most cooked rice contained low levels of RS (< 2%). Therefore, the identification of new RS genes has important theoretical and practical significance for improving the nutritional value of rice.

SSIIIa, previously reported by LI and WU’s teams, is a high-RS gene. The RS content in the loss-of-function ssIIIa mutant in the indica rice background with a Wxa allele increased to ~6%. Although SSIIIa and Wx contributed to RS formation, more functional RS genes were still desired.

In view of this, the researchers used a high-RS mutant rs4 (~10% RS content) generated by physical mutagenesis. Through genetic analysis, resequencing, and cloning of the segregating population, they identified a novel high RS gene, SSIIIb, that harbors a frame-shift mutation in the rs4 mutant in addition to the SSIIIa deficiency.

They found that the ssIIIb single mutation had no effect on RS levels, but when it pyramided with ssIIIa to form the double mutant ssIIIa ssIIIb, RS levels further increased to 10% in the indica rice background. The increased RS levels in ssIIIa and ssIIIa ssIIIb mutants were associated with increased amylose and lipid levels.

Furthermore, the researchers showed that SSIIIb and SSIIIa proteins derive from paralogous genes of the rice SSIII family, whereas SSIIIb functions mainly in leaves and SSIIIa mainly in endosperm due to their divergent tissue-specific expression patterns. SSIII underwent gene duplication in different cereals, with one SSIII paralog being expressed mainly in leaves and another in the endosperm. SSII also showed an evolutionary pattern similar to that of SSIII. The duplication of SSIII and SSII was associated with high total starch content and low RS levels in the seeds of tested cereals, compared with low starch content and high RS levels in tested dicots.

These results provide important genetic resources for breeding high-RS rice varieties, and the evolutionary characteristics of these genes may facilitate the generation of high-RS varieties in different cereals.

This work was supported by the National Key R&D Program of China, the Hainan Excellent Talent Team, and the China Agriculture Research System.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2220622120

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Loss of function of SSIIIa and SSIIIb coordinately confers high RS content in cooked rice

Article Publication Date

1-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025
Engineering Receptors to Enhance Flagellin Detection

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.