• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists home in on microRNA processing for novel cancer therapies

Bioengineer by Bioengineer
March 25, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

More than a decade of research on the mda-7/IL-24 gene has shown that it helps to suppress a majority of cancer types, and now scientists are focusing on how the gene drives this process by influencing microRNAs. Published this week in the journal Proceedings of the National Academy of Sciences, the findings could potentially have implications beyond cancer for a variety of cardiovascular and neurodegenerative diseases caused by the same microRNA-driven processes.

The study was led by Paul B. Fisher, M.Ph., Ph.D., F.N.A.I., Thelma Newmeyer Corman Endowed Chair in Cancer Research and member of the Cancer Molecular Genetics research program at VCU Massey Cancer Center, chairman of the Department of Human and Molecular Genetics at VCU School of Medicine and director of the VCU Institute of Molecular Medicine (VIMM). The mda-7/IL-24 gene was originally discovered by Fisher, and he and his colleagues have since published a number of studies detailing how the gene can suppress cancer by directly influencing two important mediators of cell death known as apoptosis and toxic autophagy. They have also been developing mda-7/IL-24 viral gene therapies, purified protein treatments and T-cell-delivered therapies that take advantage of these processes to selectively kill cancer cells.

“MicroRNAs play decisive roles in a variety of diseases, including cancer. This study shows for the first time how mda-7/IL-24 influences an enzyme critical to microRNA processing, and it provides exciting clues as to how this process could be targeted therapeutically,” says Fisher.

The researchers showed that mda-7/IL-24 reduces the expression of an enzyme called DICER, and this effect occurs only in cancer cells. DICER works to process microRNAs for specific cellular functions. In experiments involving prostate, breast and brain cancer cell lines and mouse models, overexpression of DICER was shown to rescue cancer cells from mda-7/IL-24-mediated cell death.

Microphthalmia-associated transcription factor (MITF) was found to be a key mediator in this process. MITF regulates cellular responses to reactive oxygen species (ROS), a natural byproduct of the normal metabolism of oxygen and an important component in cell signaling. In times of cellular stress, ROS levels can increase dramatically and contribute to the development of disease. The scientists showed for the first time that mda-7/IL-24 down-regulates MITF, which, in turn, down-regulates DICER, the target of MITF.

Previous experiments showed a potent bystander effect where mda-7/IL-24 not only killed cancer cells at the primary tumor site but also in distant secondary tumors not directly targeted by the therapy. The bystander effect is mediated, at least in part, by the potent immune activating and anti-growth properties of mda-7/IL-24. These findings help explain why this bystander effect occurs.

“This is an exciting and previously unknown link between mda-7/IL-24 and ROS/MITF/DICER that we plan to continue exploring,” says Fisher. “This research may open up new therapeutic targets, and monitoring the levels of these components could provide important biomarkers to help inform the effectiveness of mda-7/IL-24-based therapies.”

###

The present studies involve a close collaboration with Webster K. Cavenee, Ph.D., university professor at Ludwig Institute for Cancer Research, University of California San Diego. Fisher also collaborated on this research with Devanand Sarkar, M.B.B.S., Ph.D., associate director for education and training, Harrison Foundation Distinguished Professorship in Cancer Research and member of the Cancer Molecular Genetics research program at VCU Massey Cancer Center, professor in the Department of Human and Molecular Genetics at the VCU School of Medicine and associate scientific director of cancer therapeutics at VIMM; Swadesh K. Das, Ph.D., member of the Cancer Molecular Genetics research program at Massey, VIMM member and assistant professor in the VCU Department of Human and Molecular Genetics; Luni Emdad, M.B.B.S., Ph.D., member of the Massey Cancer Molecular Genetics research program, VIMM member and assistant professor in the VCU Department of Human and Molecular Genetics; Anjan K. Pradhan, Ph.D., lead postdoctoral investigator, Praveen Bhoopathi, Ph.D., and Sarmistha Talukdar, Ph.D., all postdoctoral research scientists in the Department of Human and Molecular Genetics; and Danielle Scheunemann, M.S. student in the Department of Human and Molecular Genetics.

This study was supported in part by VCU Massey Cancer Center’s National Cancer Institute Cancer Center Support Grant P30 CA016059, the National Foundation for Cancer Research, the VCU Institute of Molecular Medicine and the Genetics Enhancement Fund. Support was also provided by a Sponsored Research Agreement from InterLeukin Combinatorial Therapies to Emdad.

Media Contact
John Wallace
[email protected]

Tags: cancerMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Enhancing Patient Care with Continuous Medical Learning

September 12, 2025

Addiction-like Eating Tied to Deprivation and BMI

September 12, 2025

Mosquito Gene Response Reveals Japanese Encephalitis Entry

September 12, 2025

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

Enhancing Patient Care with Continuous Medical Learning

Addiction-like Eating Tied to Deprivation and BMI

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.