• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists have grown custom-shaped nanoparticles

Bioengineer by Bioengineer
October 18, 2022
in Chemistry
Reading Time: 3 mins read
0
laboratory at UrFU
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists at Ural Federal University (UrFU) and their colleagues from the Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, and the Institute of Ion Plasma and Laser Technologies, Academy of Sciences of Uzbekistan have developed a technology for the growth of nonspherical nanoparticles that are synthesized in the process of ion implantation. The new technique makes it possible to grow nanoparticles of different shapes and thus obtain the necessary properties and control these properties. The technology is applicable to various metals, both noble metals such as gold, silver and platinum, as well as “ordinary” metals, the scientists assure. A description of the technology and the results of the first experiments – copper implantation in ceramics – published in the Journal of Physics and Chemistry of Solids.

laboratory at UrFU

Credit: UrFU / Vladimir Petrov

Physicists at Ural Federal University (UrFU) and their colleagues from the Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, and the Institute of Ion Plasma and Laser Technologies, Academy of Sciences of Uzbekistan have developed a technology for the growth of nonspherical nanoparticles that are synthesized in the process of ion implantation. The new technique makes it possible to grow nanoparticles of different shapes and thus obtain the necessary properties and control these properties. The technology is applicable to various metals, both noble metals such as gold, silver and platinum, as well as “ordinary” metals, the scientists assure. A description of the technology and the results of the first experiments – copper implantation in ceramics – published in the Journal of Physics and Chemistry of Solids.

“By changing the shape of the nanoparticles from spherical to non-spherical, we were able to increase the range of optical absorption. This, in turn, is the basis for further conversion of absorbed energy into electricity, heat. As a result, we can get more functional sensors and increase their sensitivity range,” explains the co-author of the study Arseny Kiryakov, associate professor at UrFU Department of Physical Methods and Quality Control Devices. “If such nanoparticles are embedded in lasers, lasers power will increase. If we talk about sensors, their sensitivity will increase. As for the sensors, their response time will change. This is all due to the peculiarity of plasmon resonance, which causes an amplified electric field to appear around the nanoparticles.”

Metal nanoparticles are used to solve a variety of problems: from biological (sensors for determining the composition of proteins, DNA analysis, etc.) to physical (creating amplified lasers, photoluminescent sensors, etc.). Thus, in contact with biobjects – DNA, viruses, antibodies – plasmonic nanostructures allow more than an order of magnitude increase the intensity of fluorescence signals, i.e. significantly expand the capabilities of detection, identification and diagnosis. And changing the shape of nanoparticles will allow to control these properties, to improve them.

The first experiments with copper particles allowed scientists to create a metamaterial that has no analogues.

“The new material consists of nonspherical plasmonic nanoparticles in a matrix of optically transparent radiation-resistant ceramics. The controlled morphology of plasmonic nanoparticles provides improved spectral characteristics and increases the energy conversion efficiency of absorbed photons,” says Anatoly Zatsepin, professor at the Department of Physical Methods and Quality Control Devices at the UrFU. “We found that the unique physical properties of the obtained material are appeared by a special phenomenon – the effect of surface plasmon resonance.”

In addition, co-researcher from Uzbekistan proposed a universal mathematical model describing this process. According to the physicists, the model is important to describe and understand what happens to nanoparticles in different materials, and it is the first model that describes the growth of nonspherical nanoparticles. Previous models do not take into account the unusual shape of the particles.

Physicists plan to expand their understanding of the nature and laws of physical phenomena occurring in the material under external energy influences, which, in turn, will provide information about new possibilities for the functional application of this type of materials.



Journal

Journal of Physics and Chemistry of Solids

DOI

10.1016/j.jpcs.2022.110966

Article Publication Date

19-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Comparing Immune Responses: Rituximab vs. Obinutuzumab in Follicular Lymphoma

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.