• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 15, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists gain new insights into the mechanisms of cell division

Bioengineer by Bioengineer
July 11, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Centrioles — critical players in cell division

IMAGE

Credit: © Alexander Dammermann

Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth. Scientists led by Alexander Dammermann at the Max Perutz Labs, a joint venture of the University of Vienna and the Medical University of Vienna, now examine how centrioles contribute to this process. The findings, published in “Developmental Cell“, help to elucidate the function of these tiny cellular structures in mitosis.

Correct mitosis requires the formation of a filamentous spindle that ensures that chromosomes are separated to opposite ends of the cell. Similar to ropes pulling a heavy weight, the spindle needs an anchor point from where it can develop. This point is provided by centrioles that accumulate a protein meshwork called the pericentriolar material or PCM around them to form centrosomes, which serve as both the origin and attachment site for the filaments of the mitotic spindle.

Centrioles promote mitotic spindle assembly

While it was known that centrioles are essential for the initial formation of the centrosome, their role in further mitotic growth and maintenance of the PCM throughout cell division was previously unclear. The scientists were able to answer these questions with the help of C. elegans, a model organism that has exceptionally large centrosomes. Using laser microsurgery, they were able to remove the centrioles from within the centrosome at different stages of mitosis without destroying the entire structure. “What we found was that centriole ablation did not lead to an immediate collapse of the PCM as we had expected. However, further growth was strongly impaired, revealing a critical role for centrioles in PCM accumulation, and therefore mitotic spindle assembly”, first authors Triin Laos and Gabriela Cabral explain.

Centrioles promote centrosome structural integrity

Beyond their role in PCM assembly, centrioles were also essential for structural integrity, with acentriolar centrosomes liable to being pulled apart as cells proceeded through mitosis. This finding was particularly remarkable given the small size of centrioles relative to the surrounding PCM. How centrioles could confer structural integrity to a structure >30x larger is not immediately clear. The authors envision that centrioles provide anchor sites for proteins that impart tensile strength to the PCM by acting similar to steel bars in reinforced concrete. By controlling PCM assembly and structural integrity, centrioles then have critical roles throughout cell division. How centrioles perform these apparently disparate functions remains the biggest open question, the authors agree.

###

Publication in Developmental Cell

Gabriela Cabral, Triin Laos, Julien Dumont, Alexander Dammerman: “Differential Requirements For Centrioles In Mitotic Centrosome Growth And Maintenance”.

https://doi.org/10.1016/j.devcel.2019.06.004

Media Contact
Alexander Dammermann
[email protected]

Original Source

https://medienportal.univie.ac.at/presse/aktuelle-pressemeldungen/detailansicht/artikel/scientists-gain-new-insights-into-the-mechanisms-of-cell-division/

Related Journal Article

http://dx.doi.org/10.1016/j.devcel.2019.06.004

Tags: BiologyCell BiologyChemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Three NAD+ Boosters: Effects on Circulation and Microbes

January 15, 2026

MiR-483-5p: A Potential Biomarker for Pediatric Anesthesia Risks

January 15, 2026

Impact of Nurse-Led CBT on Adult Insomnia

January 15, 2026

Exploring Traditional Chinese Medicine for Depression: Insights

January 15, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    75 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Symmetry Patterns in Language Category Systems

Advanced Machine Learning Enhances Fuel Cell Efficiency

Comparing Three NAD+ Boosters: Effects on Circulation and Microbes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.