• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists from IKBFU, Moscow and Kiev conducted research on treating obesity

Bioengineer by Bioengineer
April 23, 2020
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Prevention and treatment of these diseases include changing and controlling lifestyle, diet, and the use of pharmaceuticals

IMAGE

Credit: Immanuel Kant Baltic Federal University

In the 21st century, the search for methods of treating noncommunicable diseases, such as obesity, metabolic syndrome, and diabetes are among the top priorities. Prevention and treatment of these diseases include changing and controlling lifestyle, diet, and the use of pharmaceuticals.

Despite the progress in medicine and pharmacology (developing new solutions for correcting metabolism) and biotechnologies, new effective approaches are still on demand in treating obesity, metabolic syndrome, and diabetes.

Researchers note that adipose tissue is one of the key players in the development of obesity and diabetes. Adipose tissue is classified both by anatomical location and by function (white and brown fat). So, the main functions of white adipose tissue are to save energy in the form of lipids, and it also has an endocrine function – the secretion of hormones, growth factors, cytokines, chemokines, etc.

The function of brown adipose tissue is to generate heat during adaptive thermogenesis (the process of generating heat in response to cold stimulation). In humans, unlike rodents (laboratory animals most widely used in medical experiments, including modeling of obesity, metabolic syndrome and diabetes), brown adipose tissue is present in significant numbers only in newborns and infants. Recently, the existence of active thermogenic adipose tissue in adults has been shown, but this adipose tissue differs from classical brown adipose tissue in several aspects (development, morphology, gene expression, adipokine production, etc.). This adipose tissue is called “brown”.

All types of adipocytes (cells that make up adipose tissue mainly) arise from adipose stem cells during differentiation. Currently, the question of the origin of brown adipocytes (from the same stem cell as white adipocytes, or from the same stem cell as brown adipocytes, or from its own stem cell), as well as the ability of white adipose tissue to differentiate into brown adipose tissue.

The ability to control the formation of new adipose tissue, turn white adipose tissue into brown one, or determine the direction of adipocyte stem cell differentiation into a specific subtype is an attractive goal for the development of new pharmacological substances for the treatment of obesity, metabolic syndrome and diabetes.

In addition to the search for new pharmacological substances designed to control the functions of adipose tissue or various other biochemical aspects of energy homeostasis, it is also important to study the role of water in human health, metabolism and the pathogenesis of various diseases. Water is the most abundant chemical substance on Earth and makes up the largest mass fraction in living organisms as a percentage. Water is also a universal solvent in which the basic biochemical processes of living organisms occur.

An important component of a healthy diet is drinking water instead of sugar and soda. So, the modulation of the biological and physico-chemical properties of water is also a promising opportunity to increase the effectiveness of the treatment of said diseases.

Dr. Larisa Litvinova, Ph.D. in Medicine, Head of the Immunology and Cell Biotechnologies Laboratory^

“One of the focuses of modern medicine is the development of deuterium-containing drugs. Another direction relates to the role of the D/H ratio of isotopology and its change in water, which will be used as

an adjuvant in the treatment of cancer. A different D/H ratio manifests itself in the form of a kinetic isotope effect, which is characterized by a change in the rates of biotransformation and excretion of drugs. Moreover, methodological approaches to the quality control of medicines based on isotopology of water could reduce the toxic load on the body”.

IKBFU Scientists Larisa Litvinova and Maria Wulf were conducting the research in cooperation with colleagues from Moscow and Kiev and the goal of the research was to find out whether deuterium is engaged in differentiation of adipose tissue stem cells regulation. Adipogenic differentiation of mesenchymal stem cells was chosen as an in vitro model, where the efficiency of the formation of mature fat cells from precursor cells in media with different deuterium contents was evaluated.

The data on the effect of various concentrations of deuterium on the efficiency and direction (formation of brown/beige or white adipocytes) of differentiation of mesenchymal stem cells in an in vitro model system were obtained in the study. Naturally for the possible practical application of these results, additional studies are needed that would allow a more detailed description of the molecular mechanisms of the influence of various concentrations of deuterium at the cellular level, as well as studies at the body level.

The results of the study are published in the article “The influence of deuterium on the effectiveness and type of adipogenic differentiation of stem cells of human adipose tissue in vitro” in the Scientific Reports journal.

The results can serve as the basis for the development of new approaches in the treatment of obesity, metabolic syndrome and diabetes, by regulating the differentiation of fat stem cells and adipocyte functions.

###

Media Contact
Denis Zhigulin
[email protected]

Original Source

http://eng.kantiana.ru/news/261348/?clear_cache=Y

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-61983-3

Tags: Diet/Body WeightEating Disorders/ObesityHealth Care Systems/ServicesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Medication Errors: A Feasibility Study

November 5, 2025

Alzheimer’s Disease Disrupts Brain-to-Fat Tissue Communication, Potentially Aggravating Cardiovascular and Metabolic Health

November 5, 2025

Navigating Transition: Care Triad’s Journey to Nursing Homes

November 5, 2025

Impact of RISE Program on Contraceptive Equity in Uganda

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Medication Errors: A Feasibility Study

Alzheimer’s Disease Disrupts Brain-to-Fat Tissue Communication, Potentially Aggravating Cardiovascular and Metabolic Health

DGIST Unveils Revolutionary Memristor Wafer Integration Technology, Advancing Brain-Inspired AI Chip Development

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.