• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists find evidence of link between diesel exhaust, risk of Parkinson’s

Bioengineer by Bioengineer
May 21, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UCLA study uncovers how air pollution can lead to damage to brain cells

IMAGE

Credit: UCLA Health

A new UCLA study in zebrafish identified the process by which air pollution can damage brain cells, potentially contributing to Parkinson’s disease.

Published in the peer-reviewed journal Toxicological Sciences, the findings show that chemicals in diesel exhaust can trigger the toxic buildup of a protein in the brain called alpha-synuclein, which is commonly seen in people with the disease.

Previous studies have revealed that people living in areas with heightened levels of traffic-related air pollution tend to have higher rates of Parkinson’s. To understand what the pollutants do to the brain, Dr. Jeff Bronstein, a professor of neurology and director of the UCLA Movement Disorders Program, tested the effect of diesel exhaust on zebrafish in the lab.

“It’s really important to be able to demonstrate whether air pollution is actually the thing that’s causing the effect or whether it’s something else in urban environments,” Bronstein said.

Testing the chemicals on zebrafish, he said, lets researchers tease out whether air pollution components affect brain cells in a way that could increase the risk of Parkinson’s. The freshwater fish works well for studying molecular changes in the brain because its neurons interact in a way similar to humans. In addition, the fish are transparent, allowing scientists to easily observe and measure biological processes without killing the animals.

“Using zebrafish allowed us to see what was going on inside their brains at various time-points during the study,” said Lisa Barnhill, a UCLA postdoctoral fellow and the study’s first author.

Barnhill added certain chemicals found in diesel exhaust to the water in which the zebrafish were kept. These chemicals caused a change in the animals’ behavior, and the researchers confirmed that neurons were dying off in the exposed fish.

Next, they investigated the activity in several pathways in the brain known to be related to Parkinson’s disease to see precisely how the pollutant particles were contributing to cell death.

In humans, Parkinson’s disease is associated with the toxic accumulation of alpha-synuclein proteins in the brain. One way these proteins can build up is through the disruption of autophagy — the process of breaking down old or damaged proteins. A healthy brain continuously makes and disposes of the proteins it needs for communication between neurons, but when this disposal process stops working, the cells continue to make new proteins and the old ones never get cleared away.

In Parkinson’s, alpha-synuclein proteins that would normally be disposed of pile up in toxic clumps in and around neurons, eventually killing them and interfering with the proper functioning of the brain. This can result in various symptoms, such as tremors and muscle rigidity.

Before exposing the zebrafish to diesel particles, the researchers examined the fishes’ neurons for the tell-tale pouches that carry out old proteins, including alpha-synuclein, as part of the autophagy disposal operation and found that the process was working properly.

“We can actually watch them move along, and appear and disappear,” Bronstein said of the pouches.

After diesel exposure, however, they saw far fewer of the garbage-toting pouches than normal. To confirm that this was the reason brain cells were dying, they treated the fish with a drug that boosts the garbage-disposal process and found that it did save the cells from dying after diesel exposure.

To confirm that diesel could have the same effect on human neurons, the researchers replicated the experiment using cultured human cells. Exposure to diesel exhaust had a similar effect on those cells.

“Overall, this report shows a plausible mechanism of why air pollution may increase the risk of Parkinson’s disease,” Bronstein said.

###

The study’s other authors are Sataree Khuansuwan, Daniel Juarez, Hiroma Murata and Jesus Araujo, all of the department of neurology in the David Geffen School of Medicine at UCLA.

The research was supported by the National Institute of Environmental Health Sciences, the National Institutes of Health, the Levine Foundation and the Parkinson’s Alliance.

Media Contact
Marrecca Fiore
[email protected]

Original Source

https://www.uclahealth.org/scientists-find-evidence-of-link-between-diesel-exhaust-risk-of-parkinsons

Related Journal Article

http://dx.doi.org/10.1093/toxsci/kfaa055

Tags: Clinical TrialsEnvironmental HealthMedicine/HealthParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

Texas A&M Researchers Develop Innovative Cryopreservation Technique to Stop Organ Cracking

September 18, 2025

Optimizing Geriatric Care: Staff Insights on Patient Mobilization

September 18, 2025

Researchers Pinpoint Potential Therapeutic Targets in Pediatric Germ Cell Tumors

September 18, 2025

Science Update: Unraveling the Global Impact of Cardiovascular Disease

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Emerging Research Links Microplastics to Potential Risks for Bone Health

Early Universe Galaxies Unveil Hidden Dark Matter Maps

Texas A&M Researchers Develop Innovative Cryopreservation Technique to Stop Organ Cracking

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.