• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists explore the action mechanism of a new antibiotic

Bioengineer by Bioengineer
March 4, 2021
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Timur Sabirov/Skoltech

Scientists from Skoltech and MSU have investigated antibiotic nybomycin that could prove effective against bacteria resistant to other antibiotics. Their research was published in the journal Antimicrobial Agents and Chemotherapy.

All bacterial cells contain topoisomerases, an important group of enzymes that help deal with spatial difficulties stemming from bacterial cell division associated with circular DNA replication. Topoisomerases can be of two types, I and II, depending on breaks they produce in DNA (one strand or double strand). Type II often acts as a target for antibiotics, including fluoroquinolones (FQ), a common group of antibiotics that comprises levofloxacin, ciprofloxacin, and others. Unfortunately, bacteria easily acquire resistance to FQs through mutations in topoisomerase-encoding genes. The emergence of resistant pathogenic strains is a global problem in healthcare, therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. Nybomycins reported to be “reverse antibiotics” are capable of blocking fluroquinolone resistant DNA-gyrase (one of the type II Topoisomerases). Previously, this effect was observed in gram-positive bacteria only (bacteria can be either gram-positive or gram-negative, depending on their cell wall structure).

A team led by Olga Dontsova, a professor at Skoltech and Moscow State University, has demonstrated the impact of the “reverse antibiotic” on gram-negative bacteria and showed for the first time ever that nybomycin can also be effective against unstable topoisomerases.

“Interestingly, the first inhibitors of topoisomerases of type II were found among quinolones, artificially synthesized molecules. Now increasingly more natural molecules are found that are effective against the same target. Nybomycin, a natural inhibitor of topoisomerases II, disrupts fluoroquinolone-resistant gyrases, which means that it can be used when fluoroquinolones, the classic gyrase inhibitors, do not work. This is the first study that looks into the details of inhibition of topoisomerases II in gram-negative bacteria using nybomycin which has been shown to block fluoroquinolone-sensitive and fluoroquinlone-resistant forms of gyrase in Escherichia coli,” Ilya Osterman, a principal research scientist at Skoltech Center for Life Sciences, explains.

According to Olga Dontsova: “Finding ways to overcome bacterial resistance to antibiotics is especially important in pandemics, when secondary bacterial infections that are difficult to fight often develop”.

###

Media Contact
Ilyana Zolotareva
[email protected]

Original Source

https://www.skoltech.ru/en/2021/03/scientists-explore-the-action-mechanism-of-a-new-antibiotic/

Related Journal Article

http://dx.doi.org/10.1128/AAC.00777-20

Tags: BiochemistryBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyMolecular BiologyPharmaceutical ChemistryPharmaceutical Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Cancer Drug Eradicates Aggressive Tumors in Clinical Trial

Study Reveals Thousands of Children in Mental Health Crisis Face Prolonged Stays in Hospital Emergency Rooms

How Large Language Models Are Revolutionizing Drug Development in Medicine

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.