• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 27, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists explore differences in mitochondria of memory cells in the brain with new NIH funding

Bioengineer by Bioengineer
November 9, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Have you ever seen someone you recognized, but couldn’t recall their name or how you knew them?

Memory research

Credit: Clayton Metz/Virginia Tech

Have you ever seen someone you recognized, but couldn’t recall their name or how you knew them?

As you strain to recollect the details, a pea-sized clump of neurons nestled in your hippocampus is working hard to connect the dots. This brain region, coined CA2, uniquely encodes social memories in mammals. Without it, mice can remember familiar inanimate objects – but not friends or foes they’d met before.

Now, with a five-year, $2-million National Institutes of Health grant, Shannon Farris, assistant professor at the Fralin Biomedical Research Institute at VTC, is mapping out the diverse bioenergetic and molecular characteristics of CA2 neuronal circuits to learn more about how social memories are formed, stored, and forgotten.

“Impaired social memory is a phenotype of numerous neurological disorders, ranging from autism spectrum disorder to schizophrenia and Alzheimer’s disease,” Farris said. “By unraveling the molecular nuances underlying healthy memory storage, we aim to pinpoint a host of potential interventional targets for neurodevelopmental, neurocognitive and neurodegenerative disease.”

The neurons in this brain region are energetically demanding – even more so than neighboring cells within the hippocampus. As a result, their mitochondria are bigger and more abundant, Farris explained.

But when her lab took a closer look at the bioenergetics of individual neurons in CA2 in mice, they made an unexpected discovery.

“I’d never seen anything like it before – and I’ve spent years examining this specific brain region,” Farris said.

Within a single CA2 neuron, there were different types of mitochondria based on the organelle’s location, with distal dendrites harboring molecularly and structurally distinct mitochondria compared with more proximal dendrites or neighboring neurons.

“We know that different organs, tissues, and brain regions have unique mitochondria. But here we uncovered mitochondrial heterogeneity within a single brain cell,” said Farris, who also has an appointment in the Virginia-Maryland College of Veterinary Medicine.

She hypothesizes that these unusual mitochondrial characteristics may be influencing this brain region’s plasticity – or ability to rapidly modify synapses, neurochemical portals that mediate communication between neurons.

Katy Pannoni, a postdoctoral associate in Farris’s lab, presented the findings today at the Society for Neuroscience 50th annual meeting.

Over the next five years, Farris and her team will combine a variety of new techniques and technologies – including expansion and scanning block face electron microscopy to develop 3D neuronal reconstructions, and real-time metabolic analysis – to describe the bioenergetic and molecular properties of CA2 neurons. The researchers will also genetically knock out specific mitochondrial genes to better define how certain mitochondrial properties uniquely impact social memory and behavior in mice.

####



Share13Tweet8Share2ShareShareShare2

Related Posts

Robot Bias

Flawed AI makes robots racist, sexist

June 24, 2022
Microscopy technique enables 3D super-resolution nanometre-scale imaging

Microscopy technique enables 3D super-resolution nanometre-scale imaging

June 24, 2022

Porous cells lead to poorer livers

June 24, 2022

Turtles and tortoises challenge evolutionary theories of aging

June 24, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesZoology/Veterinary ScienceVirusVehiclesUniversity of WashingtonUrogenital SystemVirologyWeaponryWeather/StormsUrbanizationViolence/CriminalsVaccine

Recent Posts

  • Repairing nature with DNA technology
  • The Sussex researchers who used international collaboration and 3D printing to stem PPE shortages in Nigeria
  • Predicting the future: A quick, easy scan can reveal late-life dementia risk
  • Scientists unravel mysterious mechanism behind “whisker crystal” growth
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....