• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, June 26, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists explain why meridional heat transport is underestimated

Bioengineer by Bioengineer
May 20, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Atlantic Meridional Overturning Circulation (AMOC) is a phenomenon responsible for transporting ocean heat northward through the Atlantic Ocean. This process significantly influences the Arctic and North Atlantic oceanic climate and the Eurasian continental climate. The corresponding cross-equatorial northward heat transport also determines the location of the Intertropical Convergence Zone (ITCZ), affecting the global energy and rainfall distribution. Changes in ocean net surface heat flux play an important role in modulating the variability of the AMOC and hence the regional and global climate. However, the spread of simulated surface heat fluxes is still large and AMOC underestimation is common, due to poorly represented dynamical processes involving multi-scale interactions within the model simulations.

Energy flow over the Atlantic

Credit: Ning Cao, Chunlei Liu

The Atlantic Meridional Overturning Circulation (AMOC) is a phenomenon responsible for transporting ocean heat northward through the Atlantic Ocean. This process significantly influences the Arctic and North Atlantic oceanic climate and the Eurasian continental climate. The corresponding cross-equatorial northward heat transport also determines the location of the Intertropical Convergence Zone (ITCZ), affecting the global energy and rainfall distribution. Changes in ocean net surface heat flux play an important role in modulating the variability of the AMOC and hence the regional and global climate. However, the spread of simulated surface heat fluxes is still large and AMOC underestimation is common, due to poorly represented dynamical processes involving multi-scale interactions within the model simulations.

Recently publishing their work in Advances of Atmospheric Sciences, Prof. Chunlei Liu and collaborators from Guangdong Ocean University, the University of Reading, and the University of Cambridge presented new findings on why heat loss over the North Atlantic is underestimated in state-of-the-art atmospheric climate model simulations.

In their study, the DEEPC (Diagnosing Earth’s Energy Pathways in the Climate system) dataset is used as the “truth” for comparison. DEEPC dataset is constructed using the energy conservation method mainly by Professor Liu and Professor Allan from the University of Reading. This dataset has been widely used by climatologists within the research community as it provides reasonable agreement regarding inferred oceanic heat transport with the in-situ RAPID (Rapid Climate Change-Meridional Overturning Circulation and Heat flux array) observations in both variability and quantity.

“The heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about 10 watts per square meter less than DEEPC, and the inferred meridional heat transport is about 0.3 petawatts (1 petawatt = 1015 watts) lower than the 1.22 petawatts from RAPID and DEEPC.” said co-author Dr. Ning Cao. “These findings can help the research community more accurately interpret the historical simulations and projections produced by contemporary models.”

After further investigation, the team found that low model horizontal resolution produced discrepancies between simulations. They showed that by increasing the resolution, it is possible to improve surface heat flux simulations north of 26°N and the inferred heat transport at 26°N in the Atlantic.

“Although there are problems in simulations, the climate model still plays an important role in climate change research.” said Professor Liu. “Further work is needed to improve model simulations of surface fluxes, and research to reduce observational flux uncertainty is also ongoing through collaboration with the University of Reading and UK Met Office.”



Journal

Advances in Atmospheric Sciences

DOI

10.1007/s00376-022-1360-7

Article Title

Discrepancies in Simulated Ocean Net Surface Heat Fluxes over the North Atlantic

Article Publication Date

25-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

“Whisker” of crystal growing out from a crystalline front.

Scientists unravel mysterious mechanism behind “whisker crystal” growth

June 25, 2022
Smoke plume from the Riverside Fire on Mount Hood National Forest, Oregon, in September 2020

New study offers insight into past—and future—of west-side wildfires

June 25, 2022

Built infrastructure, hunting and climate change linked to huge migratory bird declines

June 25, 2022

Biofinder advances detection of extraterrestrial life

June 24, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    36 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirusUrbanizationZoology/Veterinary ScienceVaccineWeather/StormsVaccinesVirologyVehiclesUniversity of WashingtonViolence/CriminalsWeaponryUrogenital System

Recent Posts

  • Scientists unravel mysterious mechanism behind “whisker crystal” growth
  • New study offers insight into past—and future—of west-side wildfires
  • Built infrastructure, hunting and climate change linked to huge migratory bird declines
  • Biofinder advances detection of extraterrestrial life
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....