• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, March 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Scientists examine bacterium found 1,000 feet underground

Bioengineer by Bioengineer
December 8, 2016
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hamilton, ON Dec. 8, 2016 — Pioneering work being carried out in a cave in New Mexico by researchers at McMaster University and The University of Akron, Ohio, is changing the understanding of how antibiotic resistance may have emerged and how doctors can combat it in the future.

In research published in Nature Communications today, the scientists examined one bacterium found 1,000 feet underground (called Paenibacillus) that demonstrated resistance to most antibiotics used today, including so-called 'drugs of last resort' such as daptomycin. These microorganisms have been isolated from the outside world for more than four million years within the cave.

The results show the bacterium is resistant to 18 different antibiotics and uses identical methods of defense as similar species found in soils. This suggests that the evolutionary pressure to conserve these resistance genes has existed for millions of years — not just since antibiotics were first used to treat disease.

Among the different ways that the bacteria could be resistant to antibiotics, the scientists identified five novel pathways that were of potential clinical concern. Finding these new pathways is particularly valuable, as it gives researchers time to develop new drugs to combat this type of resistance, potentially decades before it will become a problem for doctors and their patients.

"The diversity of antibiotic resistance and it's its prevalence in microbes across the globe should be humbling to everyone who uses these lifesaving drugs," said Gerry Wright, an author of the paper and scientific director of McMaster's Michael G. DeGroote Institute for Infectious Disease Research.

"It reflects the fact that we must understand that antibiotic use and resistance go hand in hand."

Hazel Barton, professor and director, Integrative Bioscience at The University of Akron, said: "Exploring these challenging and remote environments offers a unique opportunity to sample the genetic diversity of microbes untouched by human activity"

The bacteria were found in Lechuguilla Cave, which is one of the longest caves in the world and deepest in the United States. It is an UNESCO World Heritage Site. Due to the fragile and highly technical nature of the cave, it has been closed to all except a few scientific researchers and cave experts since its original discovery in 1986. This restricted access makes it an ideal environment in which to study how microbes have evolved without the influence of human activity.

Today's research publication follows work by the researchers in 2012 to examine microorganisms from the cave.

Although use of antibiotics revolutionized the treatment of bacterial infections in the 20th century, overuse of antibiotics has led to the emergence of antibiotic resistance in disease causing bacteria. In the U.S., the Centers for Disease Control estimate that more than 20,000 people die each year from otherwise treatable disease.

Both Health Canada and the U.S. national government have released national action plans to address the resistance crisis.

###

Editors: New Mexico's Lechuguilla Cave, a place isolated from human contact until recently, is home to a remarkable prevalence of antibiotic-resistant bacteria.

A photo is available for downloading here. https://adobe.ly/2gZSyTq

Photo credit: Max Wisshak (2012)

For more information:

Veronica McGuire
Media Relations
Faculty of Health Sciences
McMaster University
[email protected]
905-525-9140, ext. 22169

Lisa Craig
Media Relations Specialist
The University of Akron
[email protected]
330-972-7429
Cell: 330-608-6503

Media Contact

Veronica McGuire
[email protected]
90-552-591-402-2169
@mcmasteru

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    67 shares
    Share 27 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New chip design to provide greatest precision in memory to date

We are not yet approaching any maximum human lifespan, according to an examination of human mortality over time and across 19 countries

Can AI predict how you’ll vote in the next election?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In