• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists discover novel mechanism that protects mitochondrial DNA

Bioengineer by Bioengineer
October 12, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Eastern Finland have discovered a novel mechanism safeguarding mitochondrial DNA. The study, published in PNAS earlier this week, was carried out in close collaboration with research groups from CBMSO in Madrid, Spain, and Umeå University in Sweden. A central part of the protective mechanism is an unusual enzyme, PrimPol, which can re-initiate mitochondrial DNA replication after damage.

Besides nuclear genomic DNA, mitochondria also contain their own small genomes, mitochondrial DNA (mtDNA), which encodes for thirteen essential parts of the cellular respiration machinery. mtDNA is especially vulnerable to oxidative damage as it is located close to the free radical producing mitochondrial electron transport chain. Cells protect their mitochondria by repairing mtDNA as well as constantly making new copies of it to replace the damaged molecules. Although cells are able to tolerate DNA damage, problems might arise when the DNA is replicated. Certain types of damage can stall the replication machinery before all of the genome has been replicated. This can result in double-strand breaks in DNA, resulting in the loss of partially replicated parts of the genome. In mitochondria this partial loss, or deletion, causes dysfunction of the cellular respiration and is the driving pathological mechanism behind many mitochondrial diseases but also responsible for aging associated decline of cell function.

Researchers were able to show that a primase enzyme PrimPol can generate a new primer adjacent to the damaged DNA sequence and re-initiate stalled replication in mitochondria. PrimPol itself is a highly unusual, structurally ancient primase, which can synthetize DNA primers in contrast to RNA primers synthetized by all other primases in our cells. Not only does the new study change our perceptions of PrimPol's functions, it also helps us to understand the basic mechanisms of mtDNA maintenance.

"As mtDNA often suffers collateral damage from cytostatins used during cancer treatment or antibiotics targeting bacteria, understanding of the repair mechanisms can help in developing these treatments," says Dr Jaakko Pohjoismäki from the University of Eastern Finland.

"Heart cells or cardiomyocytes are especially vulnerable to the loss of mitochondrial function, and enhanced protection of mtDNA could also shield diseased hearts," he continues.

###

For further information, please contact:

Dr Jaakko Pohjoismäki, University of Eastern Finland, email: jaakko.pohjoismaki(at)uef.fi, tel. +358 50 5744745

Dr Sjoerd Wanrooij, Umeå University, email: sjoerd.wanrooij(at)umu.se

Research article:

PrimPol is required for replication reinitiation after mtDNA damage.

Rubén Torregrosa-Muñumer, Josefin M. E. Forslund, Steffi Goffarta, Annika Pfeiffer, Gorazd Stojkovič, Gustavo Carvalho, Natalie Al-Furoukh, Luis Blanco, Sjoerd Wanrooij and Jaakko L. O. Pohjoismäki. PNAS. DOI 10.1073/pnas.1705367114

Media Contact

Jaakko Pohjoismäki
[email protected]
358-505-744-745
@UniEastFinland

http://www.uef.fi

http://dx.doi.org/10.1073/pnas.1705367114

Share12Tweet7Share2ShareShareShare1

Related Posts

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

November 5, 2025
blank

Quantum-Boosted Transfer Learning for Underwater Species Classification

November 5, 2025

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

November 5, 2025

Unveiling Europe’s Key Players in Regenerative Agriculture

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

Quantum-Boosted Transfer Learning for Underwater Species Classification

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.