• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists discover new mechanism controlling brain size

Bioengineer by Bioengineer
November 16, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Assist. Prof. Canan Doganli, University of Copenhagen

Under the leadership of Professor Lars Allan Larsen and Professor Søren Tvorup Christensen at University of Copenhagen (UCPH), Denmark, an international research team has taken an important step forward in understanding the complex mechanisms that control development of the so-called cerebral cortex, which is the part of the brain that play a key role in attention, perception, awareness, thought, memory, language, and consciousness. The results have just been published in the internationally recognized journal Nature Communications.

The scientists started with genetic analyses of a large family in which children were born with primary microcephaly; a rare congenital brain disorder characterized by a reduction in the size of the cerebral cortex and varying degree of cognitive dysfunction. The scientists found that the children were carriers of a mutation in both copies of the gene, RRP7A, and by the use of stem cell cultures as well as zebrafish as model organism, RRP7A was shown to play a critical role for brain stem cells to proliferate and form new neurons. This process is extremely complex and slight disturbances may have serious consequences, which may explain why the mutation affects the brain and no other tissues and organs.

– “Our discovery is surprising, because it reveals hitherto unknown mechanisms involved in the development of the brain. In addition, it highlights the value of research in rare disorders, which is important both for the patients and family affected by the disease but also beneficial for society in the form of new knowledge about human biology”, states Lars Allan Larsen, Department of Cellular and Molecular Medicine.

The researchers further discovered that the mutation in RRP7A affects the function of the so-called primary cilia, which project in a single copy as antenna-like structures on the surface of cells to register environmental cues and control the formation of new neurons in the developing brain.

– “Our results open a new avenue for understanding how primary cilia control developmental processes, and how certain mutations at these antenna-like structures compromise the formation of tissues and organs during development. To this end, we have already initiated a series of investigations to understand the mechanisms by which RRP7A regulates ciliary signaling to control formation and organization of neurons in the brain, and how defects in this signaling may lead to brain malformation and cognitive disorders, says Søren Tvorup Christensen at Department of Biology.

###

The discovery is the result of interdisciplinary collaboration between 23 scientists from Denmark, Germany and Pakistan. The project was funded by The Lundbeck Foundation, Independent Research Fund Denmark, The Novo Nordisk Foundation, Carlsberg Foundation, The Danish Cancer Society, and The Excellence Program for Interdisciplinary Research at University of Copenhagen.

Media Contact
Professor Søren Tvorup Christensen
[email protected]

Original Source

https://www1.bio.ku.dk/nyheder/nyheder/scientists-discover-new-mechanism-controlling-brain-size/

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19658-0

Tags: BiochemistryBiologyCell BiologyDevelopmental/Reproductive BiologyGeneticsMicrobiologyMolecular BiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Bee-Stinger-Inspired Microneedles Revolutionize Drug Delivery, Accelerate Healing, and Enable Real-Time Wound Monitoring

Bee-Stinger-Inspired Microneedles Revolutionize Drug Delivery, Accelerate Healing, and Enable Real-Time Wound Monitoring

August 18, 2025
blank

Reusable ‘jelly ice’ stays cold without melting into water

August 18, 2025

A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

August 18, 2025

Fe-Lattice O–O Ligands Boost Water Oxidation Catalysis

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Guaranteeing Optimal Resource Allocation: A Focus on Scientific Advancements

Uncovering the Hidden Complexity of Myeloma: Bone Marrow Mapping Sheds New Light on Blood Cancer

Bee-Stinger-Inspired Microneedles Revolutionize Drug Delivery, Accelerate Healing, and Enable Real-Time Wound Monitoring

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.