• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists discover a warped disc “torn apart by stars” in a triple Tatooine-like system

Bioengineer by Bioengineer
September 3, 2020
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ESO/L. Calçada, Exeter/Kraus et al.

Pioneering new research has revealed the first direct evidence that groups of stars can tear apart their planet-forming disc, leaving it warped and with tilted rings.

An international team of experts, led by astronomers at the University of Exeter, has identified a stellar system where planet formation might take place in inclined dust and gas rings within a warped circumstellar disc around multiple stars.

A view from a potential planet around this system will give the observer a stunning view of a tilted, multiple stellar constellation – similar to Star Wars’ Tatooine.

The results were made possible thanks to observations with the European Southern Observatory’s Very Large Telescope (VLT), Georgia State University’s Center for High-Angular Resolution Astronomy telescope array (CHARA), and the Atacama Large Millimeter/submillimeter Array (ALMA).

The research is the first output of a large programme on young stellar system that uses a pioneering infrared imager, called MIRC-X, that combines the light from all six telescopes of the CHARA telescope array. MIRC-X has been built by the Universities of Michigan and Exeter as part of a European Research Council-funded research project.

The instrument has been designed to give new insights into how star and planet formation is taking place within the rotating, circumstellar discs of dense dust and gas surrounding young stars.

Our Solar System is remarkably flat, with the planets all orbiting in the same plane. However, this is not always the case, especially for planet-forming discs around multiple stars, like the object of the new study: GW Orionis. This system, located just 1,200 light-years away in the constellation of Orion, has three stars and a deformed, broken-apart disc surrounding them.

Stefan Kraus, professor of astrophysics at the University of Exeter, who led the research published today in Science, said: “We’re really excited that our new MIRC-X imager has provided the sharpest view yet of this intriguing system and revealed the gravitational dance of the three stars in the system. Normally, planets form around a flat disc of swirling dust and gas- yet our images reveal an extreme case where the disc is not flat at all.”, said Stefan Kraus,

“Instead it is warped and has a misaligned ring that has broken away from the disc. The misaligned ring is located in the inner part of the disc, close to the three stars. The effect is that the view of a potential planet within this ring looks remarkably like that of Tatooine, of Star Wars fame.”

The team observed the system with the SPHERE instrument on ESO’s VLT and with ALMA, and were able to image the inner ring and confirm its misalignment. The team observed shadows that this ring casts on the rest of the disc. This helped them figure out the 3D shape of the rings and overall disc geometry.

The new research reveals that this inner ring contains 30 Earth masses of dust, which could be enough to form planets.

Alexander Kreplin of the University of Exeter, said: “Any planets formed within the misaligned ring will orbit the star on highly oblique orbits and we predict that many planets on oblique, wide-separation orbits will be discovered in future planet imaging surveys.

“Since more than half of stars in the sky are born with one or more companions, this raises an exciting prospect: there could be an unknown population of exoplanets that orbit their stars on very inclined and distant orbits.”

To reach these conclusions, the team observed GW Orionis for over 11 years and mapped the orbit of the stars with unprecedented precision. Alison Young, a member of the team from the Universities of Exeter and Leicester, said: “We found that the three stars do not orbit in the same plane, but their orbits are misaligned with respect to each other and with respect to the disc.”

The international team, with researchers from the UK, Belgium, Chile, France and the US, then combined their exhaustive observations with computer simulations to understand what had happened to the system. For the first time, they were able to clearly link the observed misalignments to the theoretical ‘disc-tearing effect’, which suggests that the conflicting gravitational pull of stars in different planes can warp and break their surrounding disc.

“We conducted simulations that show that the misalignment in the orbits of the three stars could cause the disc around them to break into distinct rings. This is what we see in the observations.”, said Matthew Bate, professor of theoretical astrophysics at Exeter, who carried out some of the computer simulations on the system. “The observed shape of the inner ring also matches predictions on how the disc would tear.”

###

The research was presented in the paper “A triple star system with a misaligned and warped circumstellar disk shaped by disk tearing” that is published in the journal, Science.

Media Contact
Duncan Sandes
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.aba4633

Tags: AstronomyAstrophysicsPlanets/MoonsSatellite Missions/ShuttlesSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

Bright Excitons Enable Optical Spin State Control

Bright Excitons Enable Optical Spin State Control

August 3, 2025
blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    48 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Flexible Eddy Current Arrays Detect Cracks in Steel

CagriSema Promotes Rat Weight Loss by Balancing Energy

NSUN5 Drives Liver Cancer via m5C-EFNA3 Glycolysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.