• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists discover a molecular motor has a ‘gear’ for directional switching

Bioengineer by Bioengineer
January 4, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Illustration by Kuo-Fu Tseng, courtesy of Oregon State University.

CORVALLIS, Ore. – A study published today offers a new understanding of the complex cellular machinery that animal and fungi cells use to ensure normal cell division, and scientists say it could one day lead to new treatment approaches for certain types of cancers.

The research revealed a totally unexpected behavior about a "motor" protein that functions as chromosomes are segregated during cell division. The findings were published in Nature Communications.

The work was led by Weihong Qiu, an assistant professor of physics in the College of Science at Oregon State University, in collaboration with researchers from Henan University in China and the Uniformed Services University of the Health Sciences in Maryland.

Motor proteins are tiny molecular machines that convert chemical energy into mechanical work. They are the miniature "vehicles" of a cell, and move on a network of tracks commonly referred to as the cytoskeleton. They shuttle cellular cargos between locations and generate forces to position chromosomes. But in spite of intensive research efforts over many years, mechanisms underlying the actions of many motor proteins are still unclear.

In this study, researchers focused on a particular motor protein, called KlpA, and used a high-sensitivity light microscopy method to directly follow the movement of individual KlpA molecules on the cytoskeleton track. They discovered that KlpA is able to move in opposite directions – an unusual finding. KlpA-like motor proteins are thought to be exclusively one-way vehicles.

The researchers also discovered that KlpA contains a gear-like component that enables it to switch direction of movement. This allows it to localize to different regions inside the cell so it can help ensure that chromosomes are properly divided for normal cell division.

"In the past, KlpA-like motor proteins were thought to be largely redundant, and as a result they haven't been studied very much," Qiu said.

"It's becoming clear that KlpA-like motors in humans are crucial to cancer cell proliferation and survival. Our results help better understand other KlpA-like motor proteins including the ones from humans, which could eventually lead to novel approaches to cancer treatment."

Qiu and colleagues say they are excited about their future research, which may uncover the design principle at the atomic level that allows KlpA to move in opposite directions. And there may be other applications.

"KlpA is a fascinating motor protein because it is the first of its kind to demonstrate bidirectional movement," Qiu said. "It provides a golden opportunity for us to learn from Mother Nature the rules that we can use to design motor protein-based transport devices. Hopefully in the near future, we could engineer motor protein-based robotics for drug delivery in a more precise and controllable manner."

###

The work was done with partial support from the National Science Foundation.

Media Contact

Weihong Qiu
[email protected]
541-737-7377
@oregonstatenews

http://www.orst.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Mir-199a-3p Fuels Neuroinflammation in Alzheimer’s Model

September 4, 2025

Chronic Ototoxicity Triggers Early Hair Cell Gene Downregulation

September 4, 2025

Linking Malnutrition, Food Insecurity, and Diet Compliance

September 4, 2025

Nutrition in First 1000 Days Shapes Lifelong Health

September 4, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mir-199a-3p Fuels Neuroinflammation in Alzheimer’s Model

Chronic Ototoxicity Triggers Early Hair Cell Gene Downregulation

Linking Malnutrition, Food Insecurity, and Diet Compliance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.