• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists develop stable luminescent composite material based on perovskite nanocrystals

Bioengineer by Bioengineer
April 27, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists develop light-emitting composite material based on perovskite nanocrystals with air- and water resilient optical characteristics

IMAGE

Credit: ChemNanoMat

An international team of scientists that includes researchers from ITMO University has developed a new composite material based on perovskite nanocrystals for the purpose of creating miniature light sources with improved output capacity. The introduction of perovskite nanocrystals into porous glass microparticles made it possible to increase their operating time by almost three times, and the subsequent coating of these particles with polymers – to increase the stability of their optical properties when underwater, which is especially important for the purposes of creating light sources for application in biological media. The results have been published in ChemNanoMat.

Perovskite nanocrystals are some of the most researched objects in modern materials science. They have excellent optical properties, such as the purity and brightness of emitted light, which makes them appealing for use in modern laser systems. At the same time, perovskites are unstable in the air, when interacting with water, as well as under intensive illumination. This is why the improvement of perovskite nanocrystals’ stability is one of the key tasks that stands before the scientific community.

An international team of scientists that includes researchers from ITMO University, Ioffe Institute, as well as City University of Hong Kong, studied various conditions for the introduction of perovskite nanocrystals into porous spheres of silicon dioxide that can act as both protective matrices and optical resonators for spontaneous amplification of the luminescence signal. Their research identified the optimal parameters for the manufacturing of a perovskite nanocrystals-based luminescent material where the emission intensity stayed at 85% of the original, which is significantly higher than that of the same nanocrystals without a protection matrix. Such composite materials also remained stable under the effect of intensive UV radiation, which can be used as a light pumping source when designing laser systems.

“Our next step had to do with the development of a protective layer for such light-emitting microspheres with perovskite nanocrystals for the purposes of moving them into hydrous solutions,” says Elena Ushakova, an associate professor at ITMO’s Faculty of Photonics and Optical Information Technology. “In order to do this, we used the layer-by-layer technique of depositing alternating layers of oppositely charged materials on the microspheres’ surface. The resulting luminescent spheres can be dispersed in water while retaining their optical properties, which is important from the standpoint of their further application as light sources in biological tissues.”

###

Media Contact
Alena Gupaisova
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/cnma.202000154

Tags: Chemistry/Physics/Materials SciencesMaterialsOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Advances in Indole Chemistry Promise to Speed Up Drug Development

Revolutionary Advances in Indole Chemistry Promise to Speed Up Drug Development

August 25, 2025
blank

Scientists Create Molecule Advancing Key Step in Artificial Photosynthesis

August 25, 2025

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preventing Cracks in Flexible Electronics’ Polymer Substrates

Supplementary Motor Area Shapes Parkinson’s Gait Impairment

Sugars Signal Guard Cell Ion Transport in Red Light

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.