• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists develop predictable method to downregulate gene translation in plants

Bioengineer by Bioengineer
March 9, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

GAO Caixia’s group from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences (CAS) has developed a new method of downregulating gene translation to a predictable and desired level in plants by precisely engineering upstream open reading frames (uORFs).

Breeding plants with a predicted phenotype by engineering uORFs

Credit: IGDB

GAO Caixia’s group from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences (CAS) has developed a new method of downregulating gene translation to a predictable and desired level in plants by precisely engineering upstream open reading frames (uORFs).

The study was published online in Nature Biotechnology on Mar. 9.

The development and application of genome editing in plants has revolutionized molecular design-based crop breeding. Developing methods for fine-tuning gene expression based on precise genome changes is crucial for breeding new and desired traits into crops. Widely used gene editing tools such as CRISPR-Cas, CRISPR interference and RNA interference generally completely prevent gene transcription or reduce it to a defined but unpredictable level.

CRISPR-Cas9-driven mutagenesis of promoters provides a method for generating quantitative phenotypic changes at the transcriptional level and producing a wide range of gene expression levels. A method for predictably and incrementally regulating endogenous gene expression at the translational level would further expand on methods of controlling gene activity.

In 2018, GAO’s group led the development of an efficient and tunable method for upregulating protein expression by knocking out endogenous uORFs. In 2020, they applied this technology to the genetic improvement of strawberries, generating a variety of new strawberry germplasms with different sugar content.

uORFs are important and universal cis-regulatory elements in eukaryotes that are thought to be associated with reduced mRNA translation. Many factors, such as uORF length and the distance between uORFs and primary open reading frames (pORFs), affect the inhibitory activity of uORFs. Therefore, the researchers proposed two strategies for downregulating gene translation: introducing de novo uORFs at the 5′ untranslated region (5′ UTR) of a target gene and mutating stop codons of endogenous uORFs to extend their coding sequences and enhance their inhibitory ability.

Dual-luciferase and western blot assays in transient systems showed that the newly produced and extended uORFs downregulated LUC/REN activity ratios to 9.5-86.9% of wildtype levels but had no effect on LUC/REN mRNA levels, thereby demonstrating translational control.

Using precise genome editing technologies such as base editors and prime editors, the researchers obtained mutant rice plants carrying new and extended uORFs. They then confirmed that the effects of these engineered uORFs on phenotypes and protein expression levels were the same as those observed in the transient reporter system.

To incrementally downregulate the translation of genes, the researchers combined the above approaches and generated a series of uORFs with different inhibitory capacities at the 5′ UTRs of OsTCP19, OsTB1 and OsDLT. Transient systems showed that these uORFs incrementally downregulated the translation of pORFs to 2.5-84.9% of the wildtype level.

In addition, by editing the 5′ UTR of rice OsDLT, which encodes for DWARF AND LOW-TILLERING—a member of the GRAS family of transcriptional regulators involved in the brassinosteroid (BR) transduction pathway—they obtained a range of plants with different BR sensitivity, plant height and number of tillers that matched the corresponding reduction in OsDLT levels observed in a transient protoplast assay.

By engineering uORFs, the researchers have developed an efficient and widely applicable method for downregulating gene translation to predictable and desired levels in plants, which will greatly improve future crop breeding.

This study was supported by grants from the National Key Research and Development Program, the Strategic Priority Research Program of the CAS, and the Ministry of Agriculture and Rural Affairs of China.



Journal

Nature Biotechnology

DOI

10.1038/s41587-023-01707-w

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Tuning plant phenotypes by precise, graded downregulation of gene expression

Article Publication Date

9-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Guenevere Chen

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

March 23, 2023
Hydrostatic Pressure-Enabled Tunable Singlet Fission Materials

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

March 23, 2023

New wood-based technology removes 80% of dye pollutants in wastewater

March 23, 2023

A higher dose of magnesium each day keeps dementia at bay

March 23, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

New wood-based technology removes 80% of dye pollutants in wastewater

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In