• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists develop hydrous liquid metals for use in rhythmic bionic tissues

Bioengineer by Bioengineer
July 28, 2023
in Chemistry
Reading Time: 2 mins read
0
Schematic for biotissue-like rhythmic hydrous liquid-metal agglomerates
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a new study published on July 27 in Matter, a research group led by Prof. LIU Jing at the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, together with collaborators from Tsinghua University, has made a breakthrough in creating biotissue-like rhythmic agglomerates via two inanimate liquid materials, water and liquid metals assembled from the ground up.

Schematic for biotissue-like rhythmic hydrous liquid-metal agglomerates

Credit: LIU et. al.

In a new study published on July 27 in Matter, a research group led by Prof. LIU Jing at the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, together with collaborators from Tsinghua University, has made a breakthrough in creating biotissue-like rhythmic agglomerates via two inanimate liquid materials, water and liquid metals assembled from the ground up.

Biotissues are interesting systems. They have been imitated by various materials, but never surpassed. The most fundamental and important problem for many existing biomimetic entities is their lack of aqueous properties and biorhythms to manage their physiological functions.

To solve this long-standing problem, the researchers introduced the synergistic mechanism of in situ reduction and electrochemical welding so that the as-manufactured hydrous liquid–metal agglomerates (HLMAs) could maintain their structural features during cellular-like growth, floating, and systolic and diastolic rhythms, thus resembling the physiological scene of “brain in a vat.”

The core principle is that the reversible redox sparks the rhythm of HLMAs, which undergo rhythmic variation in physical properties while achieving systolic and diastolic rhythms, just as biotissues do during heartbeat and respiratory fluctuation, etc.

The researchers demonstrated the unique capacity of liquid matter to generate biorhythms due to its intrinsic aqueous features and spatiotemporal attributes.

The rhythmic synergy of HLMAs is revealed to be dependent on variations in matter, electrochemical energy conversion, and information transfer.

With their endowed rhythmic nature, HLMAs offer a new paradigm for the fabrication of metallic bionic tissues that may closely mimic or even transcend biotissues in the coming years.

This study is expected to be a starting point for bridging the gap between artificial matter and natural biotissues, while also offering broad opportunities for the development of increasingly advanced soft robotic systems such as artificial beating hearts, respiring lungs, liquid intelligence, and ultimately Terminator-like robots.

This work was partially supported by the National Natural Science Foundation of China and the Frontier Project of the Chinese Academy of Sciences.



Journal

Matter

DOI

10.1016/j.matt.2023.06.042

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Biotissue-like rhythmic hydrous liquid-metal agglomerates

Article Publication Date

27-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.