• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists develop DNA microcapsules with built-in ion channels

Bioengineer by Bioengineer
September 18, 2019
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Masahiro Takinoue of Tokyo Institute of Technology

A Research group led by Tokyo Tech reports a way of constructing DNA-based microcapsules that hold great promise for the development of new functional materials and devices (Figure 1). They showed that tiny pores on the surface of these capsules can act as ion channels. Their study will accelerate advances in artificial cell engineering and molecular robotics, as well as nanotechnology itself.

DNA-based, self-assembled nanostructures are promising building blocks for new kinds of micro- and nanodevices for biomedical and environmental applications. Much research is currently focused on adding functionality to such structures in order to expand their versatility.

For example, engineered capsules called liposomes that have a lipid-bilayer membrane are already successfully being used as sensors, diagnostic tools and drug delivery systems. Another group of capsules that do not have a lipid bilayer but are instead composed of colloidal particle membrane, known as Pickering emulsion[1] or colloidosomes, also have potential for many biotechnologically useful applications.

Now, a research group led by biophysicist Masahiro Takinoue of Tokyo Institute of Technology reports a new type of Pickering emulsion with the added functionality of ion channels — an achievement that opens up new routes to designing artificial cells and molecular robots.

“For the first time, we have demonstrated ion channel function using pored DNA nanostructures without the presence of a lipid-bilayer membrane,” says Takinoue.

The team’s design exploits the self-assembling properties of DNA origami nanoplates[2]. The resulting Pickering emulsions are stabilized by the amphiphilic[3] nature of the nanoplates. (See Figure 2.)

One of the most exciting implications of the study, Takinoue explains, is that it will be possible to develop stimuli-responsive systems — ones that are based on the concept of open-close switching. Such systems could eventually be used to develop artificial neural networks mimicking the way the human brain works.

“In addition, a stimuli-responsive shape change of the DNA nanoplates could serve as a driving force for autonomous locomotion, which would be useful for the development of molecular robots,” Takinoue says.

The present study highlights the team’s strengths in combining DNA nanotechnology with a perspective grounded in biophysics and soft-matter physics.

###

Technical terms

[1] Pickering emulsions: Microcapsules formed by the assembly of colloidal particles at the interface of emulsion droplets.

[2] DNA origami nanoplates: Nanoscale building blocks formed by an assembly technique that “folds” DNA molecules into desired structures.

[3] amphiphilic: A term describing compounds that have both hydrophilic and lipophilic properties, meaning that they have a good affinity for water and oil.

—

Related links

Takinoue Lab, Tokyo Tech
http://www.takinoue-lab.jp/en/

Labs spotlight – Takinoue Laboratory
https://educ.titech.ac.jp/bio/eng/news/2019_05/057401.html

Formation of Artificial Cells with a Skeletal Support Reinforcement to withstand Application Realized
https://www.titech.ac.jp/english/news/2017/038714.html

Successful use of DNA as a computer in artificial cells
– Realizing molecular robots that work in vivo –
https://www.titech.ac.jp/english/news/2017/038415.html

Media Contact
Emiko Kawaguchi
[email protected]

Original Source

https://www.titech.ac.jp/english/news/2019/045078.html

Related Journal Article

http://dx.doi.org/10.1002/anie.201908392

Tags: BiochemistryChemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Integrating GLP in Biomedical Education: Academia Meets Industry

August 28, 2025

Revolutionizing T Cells: Advancements in Interfacial Engineering

August 28, 2025

New Zenroot™ Formula Eases Stress and Enhances Sleep

August 28, 2025

Mesenchymal Stem Cells: Beneficial or Harmful in AML?

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating GLP in Biomedical Education: Academia Meets Industry

Revolutionizing T Cells: Advancements in Interfacial Engineering

New Zenroot™ Formula Eases Stress and Enhances Sleep

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.