• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 15, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists develop DNA microcapsules with built-in ion channels

Bioengineer by Bioengineer
September 18, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Masahiro Takinoue of Tokyo Institute of Technology

A Research group led by Tokyo Tech reports a way of constructing DNA-based microcapsules that hold great promise for the development of new functional materials and devices (Figure 1). They showed that tiny pores on the surface of these capsules can act as ion channels. Their study will accelerate advances in artificial cell engineering and molecular robotics, as well as nanotechnology itself.

DNA-based, self-assembled nanostructures are promising building blocks for new kinds of micro- and nanodevices for biomedical and environmental applications. Much research is currently focused on adding functionality to such structures in order to expand their versatility.

For example, engineered capsules called liposomes that have a lipid-bilayer membrane are already successfully being used as sensors, diagnostic tools and drug delivery systems. Another group of capsules that do not have a lipid bilayer but are instead composed of colloidal particle membrane, known as Pickering emulsion[1] or colloidosomes, also have potential for many biotechnologically useful applications.

Now, a research group led by biophysicist Masahiro Takinoue of Tokyo Institute of Technology reports a new type of Pickering emulsion with the added functionality of ion channels — an achievement that opens up new routes to designing artificial cells and molecular robots.

“For the first time, we have demonstrated ion channel function using pored DNA nanostructures without the presence of a lipid-bilayer membrane,” says Takinoue.

The team’s design exploits the self-assembling properties of DNA origami nanoplates[2]. The resulting Pickering emulsions are stabilized by the amphiphilic[3] nature of the nanoplates. (See Figure 2.)

One of the most exciting implications of the study, Takinoue explains, is that it will be possible to develop stimuli-responsive systems — ones that are based on the concept of open-close switching. Such systems could eventually be used to develop artificial neural networks mimicking the way the human brain works.

“In addition, a stimuli-responsive shape change of the DNA nanoplates could serve as a driving force for autonomous locomotion, which would be useful for the development of molecular robots,” Takinoue says.

The present study highlights the team’s strengths in combining DNA nanotechnology with a perspective grounded in biophysics and soft-matter physics.

###

Technical terms

[1] Pickering emulsions: Microcapsules formed by the assembly of colloidal particles at the interface of emulsion droplets.

[2] DNA origami nanoplates: Nanoscale building blocks formed by an assembly technique that “folds” DNA molecules into desired structures.

[3] amphiphilic: A term describing compounds that have both hydrophilic and lipophilic properties, meaning that they have a good affinity for water and oil.

—

Related links

Takinoue Lab, Tokyo Tech
http://www.takinoue-lab.jp/en/

Labs spotlight – Takinoue Laboratory
https://educ.titech.ac.jp/bio/eng/news/2019_05/057401.html

Formation of Artificial Cells with a Skeletal Support Reinforcement to withstand Application Realized
https://www.titech.ac.jp/english/news/2017/038714.html

Successful use of DNA as a computer in artificial cells
– Realizing molecular robots that work in vivo –
https://www.titech.ac.jp/english/news/2017/038415.html

Media Contact
Emiko Kawaguchi
[email protected]

Original Source

https://www.titech.ac.jp/english/news/2019/045078.html

Related Journal Article

http://dx.doi.org/10.1002/anie.201908392

Tags: BiochemistryChemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Genomic Islands Propel ST-131 E. coli Resistance Evolution

January 15, 2026

Matrine B10 Targets FGFR3 Pathway to Fight Liver Cancer

January 15, 2026

HOGE: Advancing Masked Face Recognition with Transfer Learning

January 15, 2026

Mosaic Lateral Heterostructures Boost 2D Perovskites

January 15, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    75 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genomic Islands Propel ST-131 E. coli Resistance Evolution

Matrine B10 Targets FGFR3 Pathway to Fight Liver Cancer

HOGE: Advancing Masked Face Recognition with Transfer Learning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.