• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Scientists crack piece of neural code for learning

Bioengineer by Bioengineer
March 3, 2015
in Neuroscience
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It sounds like the stuff of science fiction: researchers slice a brain into thin little sections and, just by measuring the properties of specific neurons, they can determine what an organism learned before it died. In fact, this sort of mind reading has become a reality. In work published today in Nature, researchers at Cold Spring Harbor Laboratory (CSHL) describe how postmortem brain slices can be “read” to determine how a rat was trained to behave in response to specific sounds. The work provides one of the first examples of how changes in the activity of individual neurons encode learning and memory in the brain.

learning

Zador’s team trained rats to associate specific tones with a reward. Changes in the tone signaled the animal to look for a reward either on the left or right side of a training box.The team later deciphered the neural code with which the animals encoded memories of these decisions. Even after the animals had died, the scientists could “read the minds of these rats.”

Researchers have long hypothesized that changes in neuronal activity are responsible for our ability to make decisions, remember things, and learn. “Neuroscientists have previously identified brain areas involved in learning something,” says CSHL Professor Anthony Zador, who led the team of researchers on this current work. “But we wanted to drill down further and identify how changes at specific connections encode a particular behavioral response.”

To do this, the team focused on how rats translate sound cues into behavior. The researchers trained rats to associate a specific tone with a reward. Changes in the tone – like the difference between a tuba and a flute – signaled the animal to look for the reward either on the left or right side of a training box.

In previous work, the team discovered that activity in specific population of neurons was crucial for animals to perform the task. This neuronal population transmitted information from one auditory brain region (the auditory cortex) to another (the auditory striatum).

In the current work, the team measured the strength of the connections between these two populations of neurons, as animals learned the task. “We found that there was a gradient in activity across the auditory striatum that corresponded to whether the animal was trained to go left or right for their reward.” explains Zador.

Based upon this information, the team reasoned that they might be able to use postmortem brain slices to “predict” (obviously, in retrospect) how these or other rats had been trained. As Zador describes, “We were amazed that in all cases, our predictions – left or right – were correct. We had deciphered a tiny piece of the neural code with which the animal encoded these memories. In essence, we could read the minds of these rats.”

“For decades scientists have been trying to map memories in the brain,” said James Gnadt, Ph.D., a program director at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS). “This study shows that scientists can precisely pinpoint the synapses where certain memories are expressed.”

According to Zador, the results are likely to be broadly applicable to other senses and parts of the brain. “We are excited to apply this method to more complex forms of learning, and to other sensory systems, like vision.”

Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory.

Share12Tweet8Share2ShareShareShare2

Related Posts

Redox biomarker could predict progression of epilepsy

October 5, 2016

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biodegradable Matrix Boosts Blood Vessel Growth for Stroke Recovery

Predicting Concentration and Mass Transfer in Pharma Drying

Widespread LA-Area Wildfires Trigger Changes in Firefighters’ Blood Proteins, Prompting Health Concerns

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.