• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists confirm pair of skeletons are from same early hominin species

Bioengineer by Bioengineer
January 17, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research part of detailed accounting of nearly two-million-year-old species

IMAGE

Credit: © Sculpture Elisabeth Daynes /Photo S. Entressangle


Separate skeletons suggested to be from different early hominin species are, in fact, from the same species, a team of anthropologists has concluded in a comprehensive analysis of remains first discovered a decade ago.

The research appears in a special issue of the journal PaleoAnthropology and is part of a series of articles that offers the most comprehensive accounting to date of Australopithecus sediba (A. sediba), a hominin species discovered in South Africa in 2008.

The fossil site of Malapa in the Cradle of Humankind, South Africa yielded two partial skeletons: a juvenile male individual–Malapa Hominin 1 (MH1)–and an adult female (MH2); each is more complete than the famous “Lucy” specimen from Ethiopia. The discovery of Malapa was made by Lee Berger, a professor in the Evolutionary Studies Institute at the University of the Witwatersrand in South Africa, who, with colleagues, dated the site to just under two million years old. They named a new hominin species, Australopithecus sediba, based on MH1 and MH2.

Over the past decade, researchers have been piecing together these skeletons; the culmination of their work appears in PaleoAnthropology, co-edited by New York University anthropologist Scott Williams and Dartmouth College anthropologist Jeremy DeSilva. The issue’s nine papers, which analyze 135 fossils, outline A. sediba‘s skull, vertebral column, thorax, pelvis, upper limb, hand, and lower limb as well as its body proportions and walking mechanics.

The papers’ consensus is that A. sediba is a unique species distinct from both A. africanus, with which it shares a close geographic proximity, and from early members of the genus Homo (e.g., H. habilis) in both East and South Africa, but that it shares features with both groups, suggesting a close evolutionary relationship.

“Our interpretations in the papers suggest that A. sediba was adapted to terrestrial bipedalism, but also spent significant time climbing in trees, perhaps for foraging and protection from predators,” says Williams, whose research in the issue centered on the axial skeleton (vertebrae, ribs, and sternum). “This larger picture sheds light on the lifeways of A. sediba and also on a major transition in hominin evolution, that of the largely ape-like species included broadly in the genus Australopithecus to the earliest members of our own genus, Homo.”

A few years ago, a separate research group posited that the hominin fossils at Malapa belonged to two different species–in part due to differences in their lumbar vertebrae. However, an analysis by Williams and his colleagues, including two Ph.D. candidates in anthropology at NYU, Jennifer Eyre and Thomas Prang, indicates that both are from A. sediba and that distinctions are due to age.

“The differences in these vertebrae can simply be attributed to their developmental age differences: the juvenile individual’s vertebrae have not yet completed growth, whereas the adult’s vertebra growth is complete,” he explains. “As it happens, the two Homo erectus skeletons we have are juveniles, so MH1 looks more similar to them because it too is a juvenile.”

###

Images of a life reconstruction of Au. sediba, commissioned by the University
of Michigan’s Museum of Natural History, are available here: https://www.dropbox.com/sh/rvh2n3b66v8fwlf/AAABL6MiBZLiNy0kEzXn7woqa?dl=0 (credit: © Sculpture Elisabeth Daynes /Photo S. Entressangle).

Media Contact
James Devitt
[email protected]
212-998-6808

Tags: ArchaeologyEvolutionOld WorldPaleontology
Share12Tweet8Share2ShareShareShare2

Related Posts

Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025
Engineering Receptors to Enhance Flagellin Detection

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    53 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ingestible Capsules Enable Microbe-Based Therapeutic Control

Bariatric Surgery’s Impact on Circulating S100A9

Engineering Receptors to Enhance Flagellin Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.