• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, June 9, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists begin to unravel global role of atmospheric dust in nourishing oceans

Bioengineer by Bioengineer
May 4, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – New research led by an Oregon State University scientist begins to unravel the role dust plays in nourishing global ocean ecosystems while helping regulate atmospheric carbon dioxide levels.

Austalia dust

Credit: NASA Earth Observatory.

CORVALLIS, Ore. – New research led by an Oregon State University scientist begins to unravel the role dust plays in nourishing global ocean ecosystems while helping regulate atmospheric carbon dioxide levels.

Researchers have long known that phytoplankton – plantlike organisms that live in the upper part of the ocean and are the foundation of the marine food web – rely on dust from land-based sources for key nutrients. But the extent and magnitude of the impact of the dust – particles from sources such as soil that are lifted by the wind and impact the Earth’s climate – have been difficult to estimate globally.

“This is really the first time it has been shown, using the modern observational record and at the global scale, that the nutrients carried by dust being deposited on the ocean are creating a response in the surface ocean biology,” said Toby Westberry, an oceanographer at Oregon State and lead author of the just-published paper in Science.

The ocean plays an important role in the carbon cycle; carbon dioxide from the atmosphere dissolves in surface waters, where phytoplankton turn the carbon into organic matter through photosynthesis. Some of the newly formed organic matter sinks from the surface ocean to the deep sea, where it is locked away, a pathway known as the biological pump.

In the new paper, Westberry and other scientists from Oregon State; University of Maryland, Baltimore County; and NASA Goddard Space Flight Center estimate deposition of dust supports 4.5% of the global annual export production, or sink, of carbon. Regional variation in this contribution can be much higher, approaching 20% to 40%, they found.

“That’s important because it’s a pathway to get carbon out of the atmosphere and down into the deep ocean,” Westberry said. “The biological pump is one of the key controls on atmospheric carbon dioxide, which is a dominant factor driving global warming and climate change.”

In the ocean, vital nutrients for phytoplankton growth are largely provided through the physical movement of those nutrients from deep waters up to the surface, a process known as mixing or upwelling. But some nutrients are also provided through atmospheric dust.

To date, the understanding of the response by natural marine ecosystems to atmospheric inputs has been limited to singularly large events, such as wildfires, volcanic eruptions and extreme dust storms. In fact, previous research by Westberry and others examined ecosystem responses following the 2008 eruption on Kasatochi Island in southwestern Alaska.

In the new paper, Westberry and Michael Behrenfeld, an Oregon State professor in the Department of Botany and Plant Pathology, along with scientists from UMBC and NASA built on this past research to look at phytoplankton response worldwide.

Westberry and Behrenfeld focused their efforts on using satellite data to examine changes in ocean color following dust inputs. Ocean color imagery is collected across the global ocean every day and reports changes in the abundance of phytoplankton and their overall health. For example, greener water generally corresponds to abundant and healthy phytoplankton populations, while bluer waters represent regions where phytoplankton are scarce and often undernourished.

The scientists at UMBC and NASA focused their efforts on modeling dust transport and deposition to the ocean surface.

“Determining how much dust is deposited into the ocean is hard, because much of the deposition occurs during rainstorms when satellites cannot see the dust. That is why we turned to a model,” said UMBC’s Lorraine Remer, research professor at the Goddard Earth Sciences Technology and Research Center II, a consortium led by UMBC. The UMBC team used observations to confirm a NASA global model before incorporating its results into the study.

Working together, the research team found that the response of phytoplankton to dust deposition varies based on location.

In low-latitude ocean regions, the signature of dust input is predominately seen as an improvement in phytoplankton health, but not abundance. In contrast, phytoplankton in higher-latitude waters often show improved health and increased abundance when dust is provided. This contrast reflects differing relationships between phytoplankton and the animals that eat them.

Lower latitude environments tend to be more stable, leading to a tight balance between phytoplankton growth and predation. Thus, when dust improves phytoplankton health, or growth rate, this new production is rapidly consumed and almost immediately transferred up the food chain.

At higher latitudes, the link between phytoplankton and their predators is weaker because of constantly changing environmental conditions. Accordingly, when dust stimulates phytoplankton growth, the predators are a step behind, and the phytoplankton populations exhibit both improved health and increased abundance.

The research team is continuing this research, bringing in improved modeling tools and preparing for more advanced satellite data from NASA’s upcoming Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission, some of which will be collected by the UMBC-designed and -built HARP2 instrument.

“The current analysis demonstrates measurable ocean biological responses to an enormous dynamic range in atmospheric inputs,” Westberry said. “We anticipate that, as the planet continues to warm, this link between the atmosphere and oceans will change.”



Journal

Science

DOI

10.1126/science.abq5252

Article Title

Atmospheric nourishment of global ocean ecosystems

Article Publication Date

5-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

New method takes the uncertainty out of oxide semiconductor layering

New method takes the uncertainty out of oxide semiconductor layering

June 9, 2023
DFEC can be reduced to form LiF-richer SEI on Li metal anode and induce denser lithium deposition

Tailoring fluorine-rich solid electrolyte interphase to boost high efficiency and long cycling stability of lithium metal batteries

June 8, 2023

Confinement effects of carbon nanotubes on polyoxometalate clusters enhance electrochemical energy storage

June 8, 2023

Study unravels the mysteries of actin filament polarity

June 8, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    42 shares
    Share 17 Tweet 11
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preparing the stage for 6G: A fast and compact transceiver for Sub-THz frequencies

New method takes the uncertainty out of oxide semiconductor layering

Researchers to explore potential of new treatment against vascular dementia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 51 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In