• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists accidentally discover a new water mold threatening Christmas trees

Bioengineer by Bioengineer
December 9, 2019
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: De-Wei Li, Neil P. Schultes, James A. LaMondia, and Richard S. Cowles


Grown as Christmas trees, Fraser firs are highly prized for their rich color and pleasant scent as well as their ability to hold their needles. Unfortunately, they are also highly susceptible to devastating root rot diseases caused by water molds in the genus Phytophthora.

Scientists in Connecticut were conducting experiments testing various methods to grow healthier Fraser trees when they accidentally discovered a new species of Phytophthora. They collected the diseased plants, isolated and grew the pathogen on artificial media, then inoculated it into healthy plants before re-isolating it to prove its pathogenicity.

“Once the organism was isolated, the presence of unusually thick spore walls alerted us that this may not be a commonly encountered species,” said Rich Cowles, a scientist at the Connecticut Agricultural Experiment Station involved with this study, “and so comparison of several genes’ sequences with known Phytophthora species was used to discover how our unknown was related to other, previously described species.” In fact, they had discovered a new species altogether.

The fact that these scientists so readily discovered a new species of Phytophthora infecting Christmas trees suggests that there could be many more species waiting to be discovered. Recognizing the greater biodiversity among this genus infecting Christmas trees is important. Transportation of infected nursery stock and chance encounters of different Phytophthora species in the field can lead to new hybrids arising, which can have different pathogenic characteristics than their parent species.

“Knowing how many and which species are present is important, not only for Christmas tree growers, but also for protecting our natural environment,” Cowles adds.

Also of note, this research was conducted using apples to do the initial isolation of Phytophthora, a method that dates back to 1931, demonstrating that old methods in plant pathology are still valid and useful. “Combining this robust old technique worked well with modern molecular biology methods to isolate, and then identify our unknown plant disease,” according to Cowles.

###

For more information about this study, read “Phytophthora abietivora, A New Species Isolated from Diseased Christmas Trees in Connecticut, U.S.A.” in the December issue of Plant Disease.

Media Contact
Ashley Bergman Carlin
[email protected]
651-994-3832

Related Journal Article

http://dx.doi.org/10.1094/PDIS-03-19-0583-RE

Tags: AgricultureBiodiversityForestryGenesMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025
Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.