• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Savannah chimpanzees, a model for the understanding of human evolution

Bioengineer by Bioengineer
October 20, 2021
in Biology
Reading Time: 4 mins read
0
Savannah chimpanzees
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To prosper, most great apes need lush forests in Africa (bonobos, chimpanzees, and gorillas) or Southeast Asia (orangutans), except for some groups of chimpanzees that live in savannahs, habitats characterised by high temperatures and very low seasonal rainfall.

Savannah chimpanzees

Credit: Jane Goodall Institute Spain and Senegal

To prosper, most great apes need lush forests in Africa (bonobos, chimpanzees, and gorillas) or Southeast Asia (orangutans), except for some groups of chimpanzees that live in savannahs, habitats characterised by high temperatures and very low seasonal rainfall.

Adriana Hernández, Serra Hunter professor at the Faculty of Psychology of the University of Barcelona, co-led the study conducted by an international team of primatologists who reviewed the existing research on the behaviour and ecology of savannah chimpanzees to understand how these apes adapt to extreme conditions.

According to the researchers, the environmental conditions of these places would lead to a specific type of behaviours and physiological responses in these chimpanzees –such as resting in caves or digging in order to get water– which are not observed in their counterparts that live in more forested areas, where they do not deal with these extreme environmental conditions.

“The study on savannah chimpanzees and what we call the landscape savannah effect have important implications for reconstructing the behaviour of the first hominis who lived in similar habitats and therefore, it helps us to better understand our own evolution”, notes Adriana Hernández, who co-led the study, published in the journal Evolutionary Anthropology, together with Stacy Lindshield, from the University of Purdue (United States).

The genetically closest-to-humans evolutionary living relative

Chimpanzees (Pan troglodytes) are our closest living relatives, since they share 98.7% of their DNA with humans and have a common ancestor that lived between 4.5 and 6 million years ago. Despite this proximity, they lack some of the biological and cultural traits that humans possess to adapt to extreme heat, such as numerous eccrine sweat glands, relative lack of hair, or the ability to create artefacts such as water containers and sun hats to mitigate dehydration and sunstroke.

The chimpanzees that live in the savannah are taxonomically indistinguishable from other chimpanzees. For this reason, comparisons of behaviour, morphology and ecology with chimpanzees that live in more forested landscapes provide key information for hypothesising how early humans may have adapted millions of years ago while African forests were receding and gave place to savannahs.

“We know that early hominins adapted to savannah environments similar to those occupied by chimpanzees today, and researchers think that savannah conditions caused adaptations in our ancestors, such as brain expansion or tolerance to high temperatures”, says Adriana Hernández, who is also the co-director of research at the Jane Goodall Institute Spain. “Therefore –she continues–, understanding how our genetically closest living relatives adapt to a dry, hot, seasonal and open environment, very similar to those where early hominins lived, helps us to model how our ancestors might have adapted and how the features that define us as humans might have emerged”.

Strategies to adapt to high temperatures

Among the different characteristics of savannah chimpanzees described in the study, their strategies to deal with high temperatures stand out. “Understanding how they deal with heat can help us better understand what strategies human ancestors may have used to cope with high temperatures. Some strategies are probably the same for chimpanzees and hominins, such as the use of caves or going into water pools to cool down”, notes the researcher. Another example the researcher highlights is the ways in which these chimpanzees try to hydrate themselves during the advanced dry season, such as digging for water when this resource is reduced to just a few spots in the landscape. “Early hominins also had to deal with low water availability during part of the year”, Hernández adds.

Groups distributed over larger areas

The study also confirmed that chimpanzee social groups in the savannah are distributed over unusually large areas of around 100 km², while chimpanzees living in more forested areas have ranges between 3 and 30 km², approximately. “However, although group sizes are similar in different habitats, chimpanzees in the savannah have a much lower population density, which could be explained by the low availability of food in this habitat”.

Despite the fact that we know much more about savannah chimpanzees now than ever before, their exact numbers are unknown, although according to the researchers “there are fewer than those living in the forest areas, as the total area they occupy is much smaller”. In addition, because they have a lower population density, there are far fewer individuals in areas of the same size than in the forest. “It should be noted that there are far fewer sites where savannah chimpanzees have been studied, as there are only two study sites where savannah chimpanzees are habituated to humans and their behaviour can be observed directly. In contrast, there are many study sites where chimpanzees are fully habituated to researchers in the forest, a habitat where these primates have been studied for decades”, explains Adriana Hernández.

Keys to understanding adaptation to climate change

Another important contribution of this study is that it helps to understand the potential effects of climate change on the species. “The adaptation of savannah chimpanzees to extreme climates can help us model how chimpanzees that currently inhabit forests might adapt to changes that climate studies project will make their environments drier and warmer. This is important, since the species is categorized as Endangered and the West African subspecies (Pan troglodytes verus) is Critically Endangered”, says the expert.

In this regard, the researchers call for “more research into the biological and cultural aspects underlying the effect of the savannah environment”, given that climate projections point to “an increase in hotter and drier areas in the future”, they conclude.



DOI

10.1002/evan.21924

Method of Research

Observational study

Subject of Research

Animals

Article Title

Chimpanzees (Pan troglodytes) in savanna landscapes

Article Publication Date

20-Sep-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.