• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Salmon, blue mussel, eider, and eel die from the same vitamin deficiency

Bioengineer by Bioengineer
December 13, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Deficiency of vitamin B1 (thiamine) in wildlife is previously known as a problem among certain species within relatively limited geographical areas. Now, researchers at Stockholm University, together with several other research institutions in Europe and North America, show that the thiamine deficiency is far more widespread than previously realized. The results are published today in the highly ranked journal Scientific Reports.

By examination of thousands of mussels, birds, and fishes in 45 areas in the Northern Hemisphere, the researchers now demonstrate that the thiamine deficiency problem in wildlife is much more extensive than previously realized. Special attention is paid to the high prevalence of such effects that cause impaired health and reproduction, but are not directly fatal. This impact is very serious, because, in the long run, also these effects will cause populations to decline and disappear. Another important conclusion is that the thiamine deficiency occurs episodically, i.e. with variable intensity in time and space.

– The symptoms may appear for one or more years in an area, after which they can disappear for some time and then return, declares Professor Lennart Balk, who has coordinated the research.

The thiamine deficiency in the species investigated here – blue mussel, common eider, American and European eel, Atlantic salmon, and sea trout – has been demonstrated by chemical and biochemical analysis. Examples of effects that are not directly fatal, but that have been related to thiamine deficiency, include reduced growth, altered organ sizes, generally impaired nutritional status, impaired blood chemistry, increased infections, altered behaviour, impaired swimming endurance, and substantial negative effects on reproduction. The link between such effects and thiamine deficiency has been demonstrated previously in laboratory experiments, but now also in wildlife in the field. Moreover, data in the existing literature have been revisited and, in the light of the new results, further indicate the occurrence of thiamine deficiency across the Pacific Ocean, North America, the Atlantic Ocean, and northern Europe.

The overall goal of the research is to find the ultimate cause of the thiamine deficiency, i.e. how it has arisen in the ecosystems. The presented results provide essential basic knowledge for the further investigation of possible biochemical mechanisms.

– Currently, we cannot exclude that the observed thiamine deficiency is so serious that it significantly contributes to the ongoing worldwide extinction of many animal species, says Lennart Balk. Other researchers have pinpointed this loss of biological diversity as the most serious of all threats to life on earth today.

###

The article "Widespread episodic thiamine deficiency in Northern Hemisphere wildlife" (DOI: 10.1038/srep38821) by researchers from 5 countries and 13 universities and other research institutions, led by Professor Lennart Balk at Stockholm University, is published in Scientific Reports within the Nature Publishing Group (NPG) and is available by open access at http://www.nature.com/articles/srep38821. The major part of the research has been funded by the foundation BalticSea2020 and the Engkvist foundations in Sweden.

More information

Lennart Balk, Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Tel +46-8-6747721, +46-73-6923468, E-mail [email protected]

Media Contact

Lennart Balk
[email protected]
46-736-923-468

http://www.su.se/english

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

September 20, 2025

Impact of Defect Size and Location on Spinal Fractures

September 20, 2025

New Metabolic Syndrome Score Validated in Teens

September 20, 2025

Low PDA Shunt Linked to Premature Infant Risks

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Impact of Defect Size and Location on Spinal Fractures

New Metabolic Syndrome Score Validated in Teens

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.